试题分析:(1)由△ABE≌△EHF(SAS)即可得到BE=FH
(2)由(1)可知AB=EH,而BC=AB,FH=EB,从而可知△FHC是等腰直角三角形,∠FCH为45°,而∠ACB也为45°,从而可证明
(3)由已知可知∠EAC=30°,AF是直径,设圆心为O,连接EO,过点E作EN⊥AC于点N,则可得△ECN为等腰直角三角形,从而可得EN的长,进而可得AE的长,得到半径,得到
所对圆心角的度数,从而求得弧长
试题解析:(1)BE=FH。理由如下:
∵四边形ABCD是正方形 ∴∠B=90°,
∵FH⊥BC ∴∠FHE=90°
又∵∠AEF=90° ∴∠AEB+∠HEF="90°" 且∠BAE+∠AEB=90°
∴∠HEF=∠BAE ∴ ∠AEB=∠EFH 又∵AE=EF
∴△ABE≌△EHF(SAS)
∴BE=FH
(2)∵△ABE≌△EHF
∴BC=EH,BE=FH 又∵BE+EC=EC+CH ∴BE="CH"
∴CH=FH
∴∠FCH=45°,∴∠FCM=45°
∵AC是正方形对角线,∴ ∠ACD=45°
∴∠ACF=∠FCM +∠ACD =90°
(3)∵AE=EF,∴△AEF是等腰直角三角形
△AEF外接圆的圆心在斜边AF的中点上。设该中点为O。连结EO得∠AOE=90°
过E作EN⊥AC于点N
Rt△ENC中,EC=4,∠ECA=45°,∴EN=NC=
Rt△ENA中,EN =
又∵∠EAF=45° ∠CAF=∠CEF=15°(等弧对等角)
∴∠EAC=30°
∴AE=
Rt△AFE中,AE=
= EF,∴AF=8
AE所在的圆O半径为4,其所对的圆心角为∠AOE=90°
=2π·4·(90°÷360°)=2π