精英家教网 > 初中数学 > 题目详情
已知:平行四边形ABCD的对角线交点为O,点E、F分别在边AB、CD上,分别沿DE、BF折叠四边形ABCD,A、C两点恰好都落在O点处,且四边形DEBF为菱形(如图).
(1)求证:四边形ABCD是矩形;
(2)在四边形ABCD中,求的值.

【答案】分析:(1)根据矩形的判定定理,先证DE=BE,再证∠DOE=90°,则可证.
(2)根据已知条件和(1)的结论,先求得AD:AB,易求解的值.
解答:(1)证明:连接OE,
∵四边形ABCD是平行四边形,
∴DO=OB,
∵四边形DEBF是菱形,
∴DE=BE,
∴EO⊥BD,
∴∠DOE=90°,
即∠DAE=90°,
又四边形ABCD是平行四边形,
∴四边形ABCD是矩形.

(2)解:∵四边形DEBF是菱形,
∴∠FDB=∠EDB,
又由题意知∠EDB=∠EDA,
由(1)知四边形ABCD是矩形,
∴∠ADF=90°,即∠FDB+∠EDB+∠ADE=90°,
则∠ADB=60°,
∴在Rt△ADB中,有AD:AB=1:
又BC=AD,

说明:其他解法酌情给分
点评:本题考查矩形的判定定理及相关性质,直角三角形的性质等,难度偏难.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知在平行四边形ABCD中,点M、N分别是边DC、BC的中点,
AB
=
a
AD
=
b
,那么
MN
关于
a
b
的分解式是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知在平行四边形ABCD中,点E在边BC上,射线AE交BD于点G,交DC的延长线于点F,AB=6,BE=3EC,求DF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知在平行四边形ABCD中,向量
AB
=
a
BC
=
b
,那么向量
BD
等于(  )
A、
a
+
b
B、
a
-
b
C、-
a
+
b
D、-
a
-
b

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:平行四边形ABCD,以AB为直径的⊙O交对角线BD于P,交边BC于Q,连接AQ交BD精英家教网于E,若BP=PD,
(1)判断平行四边形ABCD是何种特殊平行四边形,并说明理由;
(2)若AE=4,EQ=2,求:四边形AQCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在平行四边形ABCD中,点E、F分别在边AB、CD上,且AE=2EB,CF=2FD,连接EF.
(1)写出与
FC
相等的向量
AE
AE

(2)填空
AD
+
EB
-
EF
=
AE
FC
AE
FC

(3)求作:
AD
-
FE
.(保留作图痕迹,不要求写作法,请说明哪个向量是所求作的向量)

查看答案和解析>>

同步练习册答案