精英家教网 > 初中数学 > 题目详情
7.如图,在菱形ABCD中,对角线AC=8,BD=6,点E,F分别是边AB,BC的中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是(  )
A.3B.4C.5D.6

分析 设AC交BD于O,作E关于AC的对称点N,连接NF,交AC于P,则此时EP+FP的值最小,根据菱形的性质推出N是AD中点,P与O重合,推出PE+PF=NF=AB,根据勾股定理求出AB的长即可.

解答 解:设AC交BD于O,作E关于AC的对称点N,连接NF,交AC于P,则此时EP+FP的值最小,
∴PN=PE,
∵四边形ABCD是菱形,
∴∠DAB=∠BCD,AD=AB=BC=CD,OA=OC,OB=OD,AD∥BC,
∵E为AB的中点,
∴N在AD上,且N为AD的中点,
∵AD∥CB,
∴∠ANP=∠CFP,∠NAP=∠FCP,
∵AD=BC,N为AD中点,F为BC中点,
∴AN=CF,
在△ANP和△CFP中
∵$\left\{\begin{array}{l}{∠ANP=∠CFP}\\{AN=CF}\\{∠NAP=∠CFP}\end{array}\right.$,
∴△ANP≌△CFP(ASA),
∴AP=CP,
即P为AC中点,
∵O为AC中点,
∴P、O重合,
即NF过O点,
∵AN∥BF,AN=BF,
∴四边形ANFB是平行四边形,
∴NF=AB,
∵菱形ABCD,
∴AC⊥BD,OA=$\frac{1}{2}$AC=4,BO=$\frac{1}{2}$BD=3,
由勾股定理得:AB=$\sqrt{A{O}^{2}+B{O}^{2}}$=5,
故选C.

点评 本题考查了轴对称-最短路线问题,勾股定理,菱形的性质等知识点的应用,关键是理解题意确定出P的位置和求出AB=NF=EP+FP,题目比较典型,综合性比较强,主要培养学生的计算能力.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.解不等式组:$\left\{\begin{array}{l}{5x-3<4x,①}\\{4(x-1)+3≥2x,②}\end{array}\right.$ 请结合连意填空,完成本题的解答.
(1)解不等式①,得x<3;
(2)解不等式②,得x≥$\frac{1}{2}$;
(3)把不等式①和②的解集在数轴上表示出来:

(4)原不等式组的解集为$\frac{1}{2}$≤x<3.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠CON=55°,则∠AOM的度数为(  )
A.35°B.45°C.55°D.65°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如果某一个数的一个平方根是-3,那么这个数是9.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.A校和B校分别库存有电脑12台和6台,现决定支援给C校10台和D校8台.已知从A校调运一台电脑到C校和D校的运费分别为40元和10元;从B校调运一台电脑到C校和D校的运费分别为30元和20元.

(1)设A校运往C校的电脑为x台,请仿照下图,求总运费W(元)关于x的函数关系式;
(2)求出总运费最低的调运方案,最低运费是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.在数轴上表示不等式6x+4>3x-5的解集,正确的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.下列运算不正确的是(  )
A.3$\sqrt{2}$-$\sqrt{2}$=2$\sqrt{2}$B.a3+a4=a7C.a6÷a3=a3D.(3a32=9a6

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,一条直线y1=klx+b与反比例函数y2=$\frac{{k}_{2}}{x}$的图象交于A(1,5)、B(5,n)两点,与x轴交于C点,
(1)求反比例函数的解析式;
(2)求C点坐标;
(3)请直接写出当y1<y2时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.二次函数y=-$\frac{1}{2}$x2+6的图象与x轴交于A、B两点(A在左侧),顶点为N.
(1)设点P、Q为该二次函数的图象上在x轴上方的两个动点,试猜想:是否存在这样的点P,Q,使△AQP≌△ABP?如果存在,请举例验证你的猜想;如果不存在,请说明理由;
(2)若直线AK与y轴交于点K,且△AOK∽△NOA,求点K的坐标.

查看答案和解析>>

同步练习册答案