精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,点DBC的中点,点EF分别在线段AD及其延长线上,且DE=DF.给出下列条件:

①BE⊥EC②BF∥CE③AB=AC

从中选择一个条件使四边形BECF是菱形,你认为这个条件是 (只填写序号).

【答案】

【解析】试题分析:首先利用对角线互相平分的四边形是平行四边形判定该四边形为平行四边形,然后结合菱形的判定得到答案即可.

解:由题意得:BD=CDED=FD

四边形EBFC是平行四边形,

①BE⊥EC,根据这个条件只能得出四边形EBFC是矩形,

②BF∥CE,根据EBFC是平行四边形已可以得出BF∥CE,因此不能根据此条件得出菱形,

③AB=AC

∴△ADB≌△ADC

∴∠BAD=∠CAD

∴△AEB≌△AECSAS),

∴BE=CE

四边形BECF是菱形.

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点A,B在反比例函数y= 的图象上,过点A,B作x轴的垂线,垂足分别是M,N,射线AB交x轴于点C,若OM=MN=NC,四边形AMNB的面积是3,则k的值为(

A.2
B.4
C.﹣2
D.﹣4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某校20周年校庆时,需要在草场上利用气球悬挂宣传条幅,EF为旗杆,气球从A处起飞,几分钟后便飞达C处,此时,在AF延长线上的点B处测得气球和旗杆EF的顶点E在同一直线上.

(1)已知旗杆高为12米,若在点B处测得旗杆顶点E的仰角为30°,A处测得点E的仰角为45°,试求AB的长(结果保留根号);
(2)在(1)的条件下,若∠BCA=45°,绳子在空中视为一条线段,试求绳子AC的长(结果保留根号)?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD的对角线相交于点O,过点D作DE∥AC,且DE= AC,连接CE,OE,连接AE,交OD于点F.若AB=2,∠ABC=60°,则AE的长为(

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在□ABCD的形外分别作等腰直角ABF和等腰直角ADE,FAB=EAD=90°,

连结AC、EF.在图中找一个与FAE全等的三角形,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长交AD于E,交BA的延长线于点F.

(1)求证:△APD≌△CPD;
(2)求证:△APE∽△FPA;
(3)猜想:线段PC,PE,PF之间存在什么关系?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.

(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?

(2)该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有几种建造停车位的方案?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,P,Q分别是BC,AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R,S,若AQ=PQ,PR=PS,则这四个结论中正确的有( )

①PA平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP.

A. 4个 B. 3个 C. 2个 D. 1个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】8分)如图,ABC的两条高AD、BE相交于点H,且AD=BD,试说明下列结论成立的理由。(1)DBH=DAC;(2)BDH≌△ADC.

查看答案和解析>>

同步练习册答案