精英家教网 > 初中数学 > 题目详情

如图,长方形ABCD中,AB=4,BC=3,将其沿直线MN折叠,使点C与点A重合,则CN的长为________.


分析:在直角△ABC中利用勾股定理求得AC的长,在AP、CP的长度可以得到,然后证明△APN∽△ABC,利用相似三角形的对应边的比相等求得PN的长,在直角△PCN中利用勾股定理求得CN的长.
解答:解:在直角△ABC中,AC===5,
则AP=CP=2.5.
∵在△APN和△ABC中,∠PAN=∠BAC,∠APN=∠B=90°,
∴△APN∽△ABC,
=,即=
∴PN=
在直角△PCN中,CN===
故答案是:
点评:本题考查了图形的折叠,以及勾股定理,相似三角形的判定与性质,正确求得PN的长度是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网(15届江苏初二1试)已知:如图,长方形ABCD被两条线段分割成四个小长方形,如果其中图形Ⅰ、Ⅱ、Ⅲ的面积依次为8、6、5,则阴影部分的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

9、如图,长方形ABCD沿着AE折叠,使D点落在BC边上的F点处,如果∠BAF=50°,则∠EAF的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图:长方形ABCD中,AB=3,BC=4,将△BCD沿BD翻折,点C落在点F处.
(1)说明:△BED为等腰三角形;
(2)求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,长方形ABCD中,AB=3,BC=4,若将该矩形折叠,使点C与点A重合,则折痕EF的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,长方形ABCD中放置9个形状、大小都相同的小长方形,小长方形的长为x,宽为y(尺寸如图)
(1)写出两个关于x,y的关系式.
(2)求图中阴影部分的面积.

查看答案和解析>>

同步练习册答案