精英家教网 > 初中数学 > 题目详情
11.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…,按如图所示的方式放置.点A1,A2,A3,…,和点C1,C2,C3,…,分别在直线y=x+1和x轴上,则点B1的坐标是(1,1);点Bn的坐标是${B_n}({{2^n}-1,{2^{n-1}}})$.(用含n的代数式表示)

分析 根据直线解析式先求出OA1=1,再求出第一个正方形的边长为2,第三个正方形的边长为22,得出规律,即可求出第n个正方形的边长,从而求得点Bn的坐标.

解答 解:∵直线y=x+1,当x=0时,y=1,当y=0时,x=-1,
∴OA1=1,
∴B1(1,1),
∵OA1=1,OD=1,
∴∠ODA1=45°,
∴∠A2A1B1=45°,
∴A2B1=A1B1=1,
∴A2C1=2=21
∴B2(3,2)
同理得:A3C2=4=22,…,
∴B3(23-1,23-1),
∴${B_n}({{2^n}-1,{2^{n-1}}})$,
故答案为B1(1,1),${B_n}({{2^n}-1,{2^{n-1}}})$.

点评 本题考查了一次函数图象上点的坐标特征以及正方形的性质;通过求出第一个正方形、第二个正方形和第三个正方形的边长得出规律是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

1.下列叙述正确的是(  )
A.a>b,则ac2>bc2B.当x<7时,3(x-7)是负数
C.若-$\frac{x}{3}$<0,则x>-3D.当x<0时,x2<3x

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.下列说法正确的是(  )
A.旋转对称图形都是中心对称图形
B.角的对称轴就是它的角平分线
C.直角三角形三条高的交点就是它的直角顶点
D.钝角三角形的三条高(或所在直线)的交点在三角形的内部

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE.若∠CAE=65°,∠E=70°,且AD⊥BC,垂足为F,求∠BAC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,在菱形ABCD中,AC=2,∠ABC=60°,则BD=2$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.对某一种四边形给出如下定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.
(1)已知:如图1,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=80°.则∠C=130度,∠D=80度.
(2)在探究“等对角四边形”性质时:
小红画了一个“等对角四边形ABCD”(如图2),其中∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立.请你证明此结论;
(3)已知:在“等对角四边形ABCD”中,∠DAB=60°,∠ABC=90°,AB=5,AD=4.求对角线AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.已知a、b、c是同一平面内不重合的三条直线,那么下列语句中正确的个数有(  )
①如果a∥b,b∥c,那么a∥c;②如果a⊥b,b⊥c,那么a⊥c;
③如果a∥b,b⊥c,那么a⊥c;④如果a∥b,b⊥c,那么a∥c.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.如图,是由4个完全相同的小正方体组成的立体图形,它的主视图是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.小红将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°,感觉最舒适(如图1),侧面示意图为图2.使用时为了散热,她在底板下垫入散热架ACO′后,电脑转到AO′B′位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O′C⊥OA于点C,O′C=12cm.

(1)求∠CAO′的度数.
(2)显示屏的顶部B′比原来升高了多少?
(3)如图4,垫入散热架后,要使显示屏O′B与水平线的夹角仍保持120°,则显示屏O′B′应绕点O′按顺时针方向旋转多少度?

查看答案和解析>>

同步练习册答案