精英家教网 > 初中数学 > 题目详情

如图,某隧道口的横截面是抛物线形,已知路宽AB为6米,最高点离地面的距离OC为5米.以最高点O为坐标原点,抛物线的对称轴为y轴,1米为数轴的单位长度,建立平面直角坐标系。

(1)求出以这一部分抛物线为图象的函数解析式,并写出x的取值范围;

(2)有一辆宽2.8米,高1米的农用货车(货物最高处与地面AB的距离)能否通过此隧道?

解:(1)设所求函数的解析式为

由题意,得 函数图象经过点B(3,-5),

∴-5=9a. ∴

∴所求的二次函数的解析式为

x的取值范围是

(2)当车宽米时,此时CN为米,

对应

EN长为,车高米,∵

∴农用货车车能够通过此隧道。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,某隧道口的横截面是抛物线形,已知路宽AB为6米,最高点离地面的距离OC为5米.以最高点O为坐标原点,抛物线的对称轴为y轴,1米为数轴的单位长度,建立平面直角坐标系,
求:(1)以这一部分抛物线为图象的函数解析式,并写出x的取值范围;
(2)有一辆宽2.8米,高1米的农用货车(货物最高处与地面AB的距离)能否通过此隧道?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,某隧道口的横截面是抛物线形,已知路宽AB为6米,最高点离地面的距离OC为5米.以最高点O为坐标原点,抛物线的对称轴为y轴,1米为数轴的单位长度,建立平面直角坐标系.求:
(1)以这一部分抛物线为图象的函数解析式,并写出x的取值范围.
(2)有一辆宽2米,高2.5米的农用货车(货物最高处与地面AB的距离)能否通过此隧道?
(3)如果该隧道内设双行道,为了安全起见,在隧道正中间设有0.2m宽的隔离带,则该农用货车还能通过隧道吗?

查看答案和解析>>

科目:初中数学 来源:甘肃省期中题 题型:解答题

如图,某隧道口的横截面是抛物线形,已知路宽AB为6米,最高点离地面的距离OC为5米。以最高点O为坐标原点,抛物线的对称轴为y轴,1米为数轴的单位长度,建立平面直角坐标系,求:
(1)以这一部分抛物线为图象的函数解析式,并写出x的取值范围;
(2)有一辆宽2.8米,高1米的农用货车(货物最高处与地面AB的距离)能否通过此隧道?

查看答案和解析>>

科目:初中数学 来源:2012届山东省聊城市高唐县九年级上学期期末考试数学试卷(带解析) 题型:解答题

如图,某隧道口的横截面是抛物线形,已知路宽AB为6米,最高点离地面的距离OC为5米.以最高点O为坐标原点,抛物线的对称轴为y轴,1米为数轴的单位长度,建立平面直角坐标系,求:(1)以这一部分抛物线为图象的函数解析式,并写出x的取值范围;(2)有一辆宽2.8米,高1米的农用货车(货物最高处与地面AB的距离)能否通过此隧道?

查看答案和解析>>

科目:初中数学 来源:2011-2012学年安徽省安庆市桐城市石南初中九年级(上)第一次月考数学试卷(解析版) 题型:解答题

如图,某隧道口的横截面是抛物线形,已知路宽AB为6米,最高点离地面的距离OC为5米.以最高点O为坐标原点,抛物线的对称轴为y轴,1米为数轴的单位长度,建立平面直角坐标系,
求:(1)以这一部分抛物线为图象的函数解析式,并写出x的取值范围;
(2)有一辆宽2.8米,高1米的农用货车(货物最高处与地面AB的距离)能否通过此隧道?

查看答案和解析>>

同步练习册答案