精英家教网 > 初中数学 > 题目详情
1.如图所示,CD为⊙O的直径,点B在⊙O上,连接BC、BD,过点B的切线AE与CD的延长线交于点A,OE∥BD,交BC于点F,交AB于点E.
(1)求证:∠E=∠C;
(2)若⊙O的半径为3,AD=2,试求OE的长.

分析 (1)连接OB.先证明∠ABO、∠CBD均为直角,然后依据同角的余角相等证明∠ABD=∠CBO,接下来,结合等腰三角形的性质和平行线的性质进行证明即可;
(2)连接OB,先求得AB的长,然后由平行线分线段成比例定理求得BE的长,最后再△BOE中依据勾股定理可求得OE的长.

解答 解:(1)证明:如图1:连接OB.

∵CD为圆O的直径,
∴∠CBD=∠CBO+∠OBD=90°.
∵AE是圆O的切线,
∴∠ABO=∠ABD+∠OBD=90°.
∴∠ABD=∠CBO.
∵OB=OC,
∴∠C=∠CBO.
∴∠C=∠ABD.
∵OE∥BD,
∴∠E=∠ABD.
∴∠E=∠C.
(2)如图2所示:连接OB.

∵圆O的半径为3,AD=2,
∴OA=5,OB=3.
∴AB=$\sqrt{A{O}^{2}-O{B}^{2}}$=4.
∵BD∥OE,
∴$\frac{AB}{EB}=\frac{AD}{DO}$,即$\frac{4}{BE}=\frac{2}{3}$.
解得:BE=6.
∵∠OBE=90°,
∴OE=$\sqrt{B{E}^{2}+O{B}^{2}}$=3$\sqrt{5}$.

点评 本题主要考查的是切线的性质、圆周角定理的应用、等腰三角形的性质、平行线的性质、平行线分线段成比例定理、勾股定理的应用,求得BE的长是解答本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

11.一次函数的图象与直线y=-$\frac{1}{3}$x平行,且与直线y=2x-6的交点在x轴上,那么这个一次函数的解析式为y=-$\frac{1}{3}$x+1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A出发,沿AB以4cm/s的速度向点B运动;同时点Q从C点出发,沿CA以3cm/s的速度向A点运动.设运动时间为x(s).
(1)当x为何值时,PQ∥BC;
(2)当△APQ与△CQB相似时,AP的长为$\frac{40}{9}$cm或20cm;
(3)当S△BCQ:S△ABC=1:3,求S△APQ:S△ABQ的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.
(1)求证:DE⊥AG;
(2)如图2,正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°),得到正方形OE′F′G′;
①在旋转过程中,当∠OAG′是直角时,求α的度数;
②若正方形ABCD的边长为2,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.化简:
(1)$\frac{17{x}^{2}y}{54{a}^{2}b}•\frac{-9a{b}^{3}}{51xy}$;                            
(2)$\frac{(1-4x)^{2}}{2x+3}•\frac{4{x}^{2}+12x+9}{4x-1}$;
(3)(4x2-y2)÷$\frac{4{x}^{2}-4xy+{y}^{2}}{2x-y}$.
(4)$\frac{{x}^{2}-2x+1}{{x}^{2}-1}÷\frac{x-1}{{x}^{2}+x}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.如图所示,若在某棋盘上建立直角坐标系,使“将”位于点(2,-2),“象”位于点(4,-2),则“炮”位于点(  )
A.(1,3)B.(0,1)C.(-1,2)D.(-2,2)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.先化简再求值:$\frac{3x-3}{x^2-1}$÷$\frac{3x}{x+1}$-$\frac{1}{x-1}$,已知x满足x2-x-1=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.求下列各式中的x
(1)$\frac{1}{2}(x-1)^{2}=18$;
(2)(x-7)3=27.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.化简:$\frac{2ab}{{a}^{2}-{b}^{2}}$+$\frac{a}{a-b}$-$\frac{b}{a+b}$.

查看答案和解析>>

同步练习册答案