精英家教网 > 初中数学 > 题目详情

【题目】如图,在四边形ABCD中,∠B=90°,AB=BC=3,CD=8,AD=10.

(1)求∠BCD的度数;

(2)求四边形ABCD的面积.

【答案】(1)∠BCD=135°;(2) S四边形ABCD=33.

【解析】

(1)连接AC,在直角三角形ABC中,利用勾股定理求出AC的长,再由CDAD的长,利用勾股定理的逆定理判断得到三角形ACD为直角三角形,再由等腰直角三角形的性质,根据∠BCD=∠ACB+∠ACD即可求出;
(2)四边形ABCD面积=三角形ABC面积+三角形ACD面积,求出即可.

(1)连接AC, Rt△ABC中,∠B=90°,AB=BC=3

根据勾股定理,得AC==6,∠ACB=45°,

∵CD=8,AD=10,

,

∴△ACD为直角三角形,即∠ACD=90°,

∠BCD=∠ACB+∠ACD=135°;

(2)根据题意,得S四边形ABCD=SABC+SACD

×3×3×6×8

=9+24

=33.

故答案为(1)BCD=135°;(2) S四边形ABCD=33.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点

(1)求证:ABM≌△DCM

(2)判断四边形MENF是什么特殊四边形,并证明你的结论;

(3)当AD:AB= _时,四边形MENF是正方形(只写结论,不需证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在同一条直线上,M,N分别为BE,CD的中点.

(1)求证:△ABE≌ACD;

(2)判断△AMN的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD是平行四边形,下列结论中不正确的是(  )

A. ABBC时,它是菱形 B. ACBD时,它是菱形

C. 当∠ABC90°时,它是矩形 D. ACBD时,它是正方形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC的三边长分别为abc,下列条件:①∠A=∠B-∠C;②∠A:∠B:∠C=3:4:5;③a2=(b+c)(b-c);④abc=5:12:13,其中能判断△ABC是直角三角形的个数有( )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AD,BE是两条中线,则SEDC:SABC=( )

A.1:2
B.1:4
C.1:3
D.2:3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1 , 另两张直角三角形纸片的面积都为S2 , 中间一张正方形纸片的面积为S3 , 则这个平行四边形的面积一定可以表示为(
A.4S1
B.4S2
C.4S2+S3
D.3S1+4S3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,对角线ACBD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E

1)证明:四边形ACDE是平行四边形;

2)若AC=8BD=6,求△ADE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,,E是边DC上一点,连接AEBC的延长线于点H,点F是边AB上一点,使得,作的角平分线BH于点G,若,则的度数是(

A.B.C.D.

查看答案和解析>>

同步练习册答案