精英家教网 > 初中数学 > 题目详情
含30°角的直角三角板ABC中,∠A=30°,将其绕直角顶点C顺时针旋转α角(0°<α<120°且α≠90°),得到Rt△A'B'C,A'C边与AB所在直线交于点D,过点 D作DE∥A'B'交CB'边于点E,连接BE。
(1)如图1,当A'B'边经过点B时,α=_____°;
(2)如图2,在三角板旋转的过程中,若∠CBD的度数是∠CBE度数的m倍,猜想m的值并证明你的结论;
(3)如图2,设BC=1,AD=x,△BDE的面积为S,以点E为圆心,EB为半径作⊙E,当S=S△ABC时,求AD的长,并判断此时直线A′C与⊙E的位置关系。
解:(1)当A′B′边经过点B时,α=60°;
(2)猜想:如图2,点D在AB边上时,m=2;
证明:当时,点D在AB边上(如图2),
∵ DE∥A′B′,

由旋转性质可知,CA=CA′,CB=CB′,∠ACD=∠BCE,

∴△CAD∽△CBE,
∴∠A =∠CBE=30°,
∵ 点D在AB边上,∠CBD=60°,

即m=2;
(3)在Rt△ABC中,∠ACB=90°,∠A=30°,BC=1,
∴AB=2,
由△CAD∽△CBE 得,
∵AD=x,

当点D在AB边上时,AD=x,,∠DBE=90°,
此时,
当S=时,
整理,得
解得,即AD=1,
此时D为AB中点,故∠DCB=60°,∠BCE=30°=∠CBE,
∴EC=EB,

点E在CB′边上,
∴圆心E到A′C的距离EC等于⊙E的半径EB,
∴直线A′C与⊙E相切。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

14、把两个一样大的含30°角的直角三角板按如图的方式拼在一起,其中AC平分∠BAF,AD平分∠EAF,请写出所有的等腰三角形:
△ABE,△ACD,△ABC,△ADE

查看答案和解析>>

科目:初中数学 来源: 题型:

已知△ABC为等腰三角形,AB=AC,∠BAC=120°,O为BC边的中点,将-含30°角的直角三角板PQR放置到△ABC上,使得P点与O点重合,将三角板绕着O点旋转,在旋转过程中,PQ、PR分别与直线AB、AC交于点E、F:
(1)当PQ、PR分别与线段AB、AC交于点E、F时(如图a),求证:∠BEO=∠COF;
(2)当PQ、PR分别与直线AB、AC交于点E、F时(如图b、图c),∠BEO与∠COF的大小关系是否改变?请直接写出结论;
(3)在图c中,连接EF,若AB=4,BE=
3
,求CF的长.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•威海)操作发现
将一副直角三角板如图①摆放,能够发现等腰直角三角板ABC的斜边与含30°角的直角三角板DEF的长直角边DE重合.
问题解决
将图①中的等腰直角三角板ABC绕点B顺时针旋转30°,点C落在BF上,AC与BD交于点O,连接CD,如图②.
(1)求证:△CDO是等腰三角形;
(2)若DF=8,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•大庆模拟)小明在玩一副三角板时发现:含45°角的直角三角板的斜边可与含30°角的直角三角板的较长直角边完全重合(如图①).即△C′DA′的顶点A′、C′分别与△BAC的顶点A、C重合.现在,他让△C′DA′固定不动,将△BAC通过变换使斜边BC经过△C′DA′的直角顶点D.
(1)如图②,将△BAC绕点C按顺时针方向旋转角度α(0°<α<180°),使BC边经过点D,则α=
15
15
°.
(2)如图③,将△BAC绕点A按逆时针方向旋转,使BC边经过点D.试说明:BC∥A′C′.
(3)如图④,若AB=
2
,将△BAC沿射线A′C′方向平移m个单位长度,使BC边经过点D,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,有一位同学用一个含30°角的直角三角板估测学校的旗杆AB的高度,他将30°角的直角边水平放在1.3米高的支架CD上,三角板的斜边与旗杆的顶点在同一直线上,他又量得D、B的距离为15米,则旗杆AB的高度为(  )(
3
≈1.73,结果精确到0.1m)

查看答案和解析>>

同步练习册答案