精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,∠C=90°,CAB=30°,AB=10,点D在线段AB上,AD=2.点P,Q以相同的速度从D点同时出发,点P沿DB方向运动,点Q沿DA方向到点A后立刻以原速返回向点B运动.以PQ为直径构造⊙O,过点P作⊙O的切线交折线AC﹣CB于点E,将线段EP绕点E顺时针旋转60°得到EF,过FFGEPG,当P运动到点B时,Q也停止运动,设DP=m.

(1)当2<m≤8时,AP=,AQ=.(用m的代数式表示)

(2)当线段FG长度达到最大时,求m的值;

(3)在点P,Q整个运动过程中,

①当m为何值时,⊙O与△ABC的一边相切?

②直接写出点F所经过的路径长是.(结果保留根号)

【答案】(1)2+m,m﹣2;(2)m=5.5;(3)①当m=1或4或10﹣时,⊙O与△ABC的边相切.②点F的运动路径的长为+

【解析】

试题(1)根据题意可得AP=2+mAQ=m2.
(2)如图1中在RtEFG,

推出所以当点E与点C重合时,PE的值最大,求出此时EP的长即可解决问题.
(3)①当 (Q在往A运动)时,如图2中,设ACH,连接OH.

(QAB运动),PQ=(2+m)(m2)=4,如图3中,设ACH.连接OH.如图4中,设BCN,连接ON.

分别求解即可.
②如图5,F的运动轨迹是F1→F2→B.分别求出即可解决问题.

试题解析:(1)时,AP=2+mAQ=m2.

故答案为2+mm2.

(2)如图1中,

RtEFG,

∴当点E与点C重合时,PE的值最大,

易知此时

m=5.5

(3)①当 (Q在往A运动)时,如图2中,设ACH,连接OH.

则有AD=2DH=2,

DH=DQ=1,即m=1.

(QAB运动),PQ=(2+m)(m2)=4,

如图3中,设ACH.连接OH.

AO=2OH=4,AP=4+2=6,

2+m=6,

m=4.

如图4中,设BCN,连接ON.

RtOBN,

综上所述,m=14时,O与△ABC的边相切。

②如图5,F的运动轨迹是F1→F2→B.

易知

为定值,

∴点F的第二段的轨迹是线段

,

∴点F的运动路径的长为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线的顶点坐标是(2,﹣1),且经过点A(5,8)

(1)求该抛物线的解析式;

(2)设该抛物线与y轴相交于点B,与x轴相交于C、D两点(点C在点D的左边),试求点B、C、D的坐标;

(3)设点Px轴任一点,连接AP、BP.试求当AP+BP取得最小值时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为8的正方形ABCD中,点O为AD上一动点(4<OA<8),以O为圆心,OA的长为半径的圆交边CD于点M,连接OM,过点M作O的切线交边BC于N.

(1)求证:△ODM∽△MCN;

(2)设DM=x,求OA的长(用含x的代数式表示);

(3)在点O的运动过程中,设CMN的周长为P,试用含x的代数式表示P,你能发现怎样的结论?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+b的图象与反比例函数(x>0)的图象交于A(2,﹣1),B(,n)两点,直线y=2与y轴交于点C.

(1)求一次函数与反比例函数的解析式;

(2)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】暑期,某学校将组织部分优秀学生分别到A、B、C、D四个地方进行夏令营活动,学校按定额购买了前往四地的车票.如图1是未制作完成的车票种类和数量的条形统计图,请根据统计图回答下列问题:

(1)若去C地的车票占全部车票的30%,则去C地的车票数量是    张,补全统计图;

(2)若学校采用随机抽取的方式分发车票,每人一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么李明同学抽到去B地的概率是多少?

(3)若有一张去A地的车票,红红和天天都想要,决定采取旋转转盘的方式来确定.其中甲转盘被分成四等份且标有数字1、2、3、4,乙转盘分成三等份且标有数字7、8、9,如图2所示.具体规定是:同时转动两个转盘,当指针指向的两个数字之和是偶数时,票给红红,否则票给天天(指针指在线上重转).试用列表法树状图的方法分析这个规定对双方是否公平.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解食品安全状况,质监部门抽查了甲、乙、丙、丁四个品牌饮料的质量,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,完成下列问题:

(1)这次抽查了四个品牌的饮料共 瓶;

(2)请你在答题卡上补全两幅统计图;

(3)若四个品牌饮料的平均合格率是95%,四个品牌饮料月销售量约20万瓶,请你估计这四个品牌的不合格饮料有多少瓶?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在四边形ABCD中,点EAD上,BCE=∠ACD=90°BAC=∠DBC=CE

(1)求证:AC=CD

(2)若AC=AE,求DEC的度数.

【答案】(1)证明见解析;(2)112.5°.

【解析】试题分析: 根据同角的余角相等可得到结合条件再加上 可证得结论;
根据 得到 根据等腰三角形的性质得到 由平角的定义得到

试题解析: 证明:

ABCDEC中,

2∵∠ACD90°ACCD

∴∠1D45°

AEAC

∴∠3567.5°

∴∠DEC180°5112.5°

型】解答
束】
21

【题目】一个零件的形状如图所示,工人师傅按规定做得∠B=90°

AB3BC4CD12AD13,假如这是一块钢板,你能帮工人师傅计算一下这块钢板的面积吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是等边三角形,点分别在边上,相交于点,垂足为.

1)求证:

2)若,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图(1),在ABC,AB=AC,O为ABC内一点,且OB=OC,求证:直线AO垂直平分BC.以下是小明的证题思路,请补全框图中的分析过程.

(2)如图(2),在ABC中,AB=AC,点D、E分别在AB、AC上,且BD=CE.请你只用无刻度的直尺画出BC边的垂直平分线(不写画法,保留画图痕迹).

(3)如图(3),在五边形ABCDE中,AB=AE,BC=DE,B=E,请你只用无刻度的直尺画出CD边的垂直平分线,并说明理由.

查看答案和解析>>

同步练习册答案