精英家教网 > 初中数学 > 题目详情
8.阅读材料:
例:说明代数式 $\sqrt{{x^2}+1}+\sqrt{{{(x-3)}^2}+4}$的几何意义,并求它的最小值.
解:$\sqrt{{x^2}+1}+\sqrt{{{(x-3)}^2}+4}=\sqrt{{{(x-0)}^2}+{1^2}}+\sqrt{{{(x-3)}^2}+{2^2}}$,如图,建立平面直角坐标系,点P(x,0)是x轴上一点,则$\sqrt{{{(x-0)}^2}+{1^2}}$可以看成点P与点A(0,1)的距离,$\sqrt{{{(x-3)}^2}+{2^2}}$可以看成点P与点B(3,2)的距离,所以原代数式的值可以看成线段PA与PB长度之和,它的最小值就是PA+PB的最小值.
设点A关于x轴的对称点为A′,则PA=PA′,因此,求PA+PB的最小值,只需求PA′+PB的最小值,而点A′、B间的直线段距离最短,所以PA′+PB的最小值为线段A′B的长度.为此,构造直角三角形A′CB,因为A′C=3,CB=3,所以A′B=3$\sqrt{2}$,即原式的最小值为3$\sqrt{2}$.
根据以上阅读材料,解答下列问题:
(1)代数式$\sqrt{{{(x-1)}^2}+1}+\sqrt{{{(x-2)}^2}+9}$的值可以看成平面直角坐标系中点P(x,0)与点A(1,1)、点B(2,3)的距离之和.(填写点B的坐标)
(2)代数式 $\sqrt{{x^2}+36}+\sqrt{{x^2}-12x+40}$的最小值.

分析 (1)先把原式化为$\sqrt{(x-1)^{2}+{1}^{2}}$+$\sqrt{(x-2)^{2}+{3}^{2}}$的形式,再根据题中所给的例子即可得出结论;
(2)先把原式化为$\sqrt{{(x-0)}^{2}+{6}^{2}}$+$\sqrt{(x-6)^{2}+{2}^{2}}$的形式,故得出所求代数式的值可以看成平面直角坐标系中点P(x,0)与点A(0,6)、点B(6,2)的距离之和,再根据在坐标系内描出各点,利用勾股定理得出结论即可.

解答 解:(1)∵原式化为$\sqrt{(x-1)^{2}+{1}^{2}}$+$\sqrt{(x-2)^{2}+{3}^{2}}$的形式,
∴代数式$\sqrt{{{(x-1)}^2}+1}+\sqrt{{{(x-2)}^2}+9}$的值可以看成平面直角坐标系中点P(x,0)与点A(1,1)、点B (2,3)或(2,-3)的距离之和,
故答案为(2,3),(2,-3);

(2)∵原式$\sqrt{(x-0)^{2}+{6}^{2}}$+$\sqrt{(x-6)^{2}+{2}^{2}}$的化为的形式

∴所求代数式的值可以看成平面直角坐标系中点P(x,0)与点A(0,6)、点B(6,2)的距离之和,
如图所示:设点A关于x轴的对称点为A′,则PA=PA′,
∴PA+PB的最小值,只需求PA′+PB的最小值,而点A′、B间的直线段距离最短,
∴PA′+PB的最小值为线段A′B的长度,
∵A(0,6),B(6,2)
∴A′(0,-6),A′C=6,BC=8,
∴A′B=$\sqrt{A′{C}^{2}+B{C}^{2}}$=$\sqrt{{6}^{2}+{8}^{2}}$=10,
故答案为:10.

点评 本题考查的是轴对称-最短路线问题,解答此题的关键是根据题中所给给的材料画出图形,再利用数形结合求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.现有8位旅客要从60千米外的某地赶往火车站乘坐火车,此时离火车开车时间只有2小时20分,他们步行的速度是每小时5千米,惟一可以利用的交通工具只有一辆小汽车,但这辆小汽车连同司机在内最多能乘坐5人,小汽车的平均速度是每小时75千米.
(1)如果只用小汽车分两批来回接送,其他旅客在原地等待,这8位旅客都能赶上火车吗?为什么?
(2)如果在小汽车接送第一趟4位旅客的同时,让其他旅客步行,小汽车到达火车站后,立即返回接送步行的旅客,第二趟旅客到达火车站时,离火车开车时间还有几分钟?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如果代数式7x-4的值是非负数,那么x的取值范围是x≥$\frac{4}{7}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如图,已知∠BOD=100°,点A是$\widehat{BD}$的中点,则∠BCD=50°,∠ABO=65°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如图,点O的四边形ABCD内一点,OA=OB=OC,AD⊥CD,∠ABC=60°,则∠DAO+∠DCO的大小为(  )
A.100°B.120°C.130°D.150°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.为了测量树的高度,小亮把镜子放在离树(AB)8.1m的点E处,然后观测沿着直线BE后退到点D,这时他恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.7m,小亮的目高CD=1.52m,则树高AB约是4.6m.(精确到0.1m)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.随着科技与经济的发展,中国廉价劳动力的优势开始逐渐消失,而作为新兴领域的机器人产业则迅速崛起,机器人自动化线的市场也越来越大,并且逐渐成为自动化生产线的主要方式,某化工厂要在规定时间内搬运1200千元化工原料.现有A,B两种机器人可供选择,已知A型机器人比B型机器人每小时多搬运30千克,A型机器人搬运900千克所用的时间与B型机器人搬运600千克所用的时间相等.
(1)两种机器人每小时分别搬运多少化工原料?
(2)该工厂原计划同时使用这两种机器人搬运,工作一段时间后,A型机器人又有了新的搬运任务,但必须保证这批化工原料在11小时内全部搬运完毕.求:A型机器人至少工作几个小时,才能保证这批化工原料在规定的时间内完成.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.在数轴上到原点距离等于3的数是(  )
A.3B.-3C.3或-3D.不知道

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图,平安路与幸福路是两条平行的道路,且与新兴大街垂直,老街与小米胡同垂直,书店位于老街与小米胡同的交口处,如果小强同学站在平安路与新兴大街的交叉路口,准备去书店,按图中的街道行走,最近的路程为500m.

查看答案和解析>>

同步练习册答案