精英家教网 > 初中数学 > 题目详情
9.如图①,E是直线AB、CD内部一点,AB∥CD,连接EA、ED.

(1)探究猜想:
①若∠EAB=30°,∠EDC=40°,求∠AED的度数;
②若∠EAB=20°,∠EDC=60°,求∠AED的度数;
③猜想图①中∠AED、∠EAB、∠EDC的关系,并说明理由
(2)扩展应用:
如图②,射线FE与长方形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的4个区域(不含边界,其中区域③④位于直线AB的上方),P是位于以上四个区域内的一点,试猜想∠PEB、∠PFC、∠EPF的关系(不要求说明理由)

分析 (1)①过点E作EF∥AB,再由平行线的性质即可得出结论;②,③根据①中的方法可得出结论;
(2)点P分别位于①、②、③、④四个区域分别根据平行线的性质进行求解即可得到结论.

解答 解:(1)①如图①,过点E作EF∥AB,

∵AB∥CD,
∴AB∥CD∥EF,
∵∠A=30°,∠D=40°,
∴∠1=∠A=30°,∠2=∠D=40°,
∴∠AED=∠1+∠2=70°;
②过点E作EF∥AB,
∵AB∥CD,
∴AB∥CD∥EF,
∵∠A=20°,∠D=60°,
∴∠1=∠A=20°,∠2=∠D=60°,
∴∠AED=∠1+∠2=80°;
③猜想:∠AED=∠EAB+∠EDC.
理由:过点E作EF∥CD,
∵AB∥DC∴EF∥AB(平行于同一条直线的两直线平行),
∴∠1=∠EAB,∠2=∠EDC(两直线平行,内错角相等),
∴∠AED=∠1+∠2=∠EAB+∠EDC(等量代换).

(2)根据题意得:
点P在区域①时,∠EPF=360°-(∠PEB+∠PFC);

点P在区域②时,∠EPF=∠PEB+∠PFC;

点P在区域③时,∠EPF=∠PEB-∠PFC;

点P在区域④时,∠EPF=∠PFC-∠PEB.

点评 本题考查的是平行线的性质,三角形内角和定理及三角形外角的性质,根据题意作出辅助线,利用数形结合求解是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.分解因式:
(1)a3-4a;                         
(2)4a(x-y)+8b(y-x);
(3)(a2+4)2-16a2
(4)(x+4)(x+6)+1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.计算:(1)(1+3x)(1-3x)=1-9x2,(2)(2x-y)2=4x2-4xy+y2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.(1)填空:21-20=2-1=2(  ),22-21=4-2=2(  ),23-22=8-4=2(  ),…
(2)探索(1)中式子的规律,试写出第n个等式,并说明第n个等式成立:
(3)计算:20+21+22+…+299

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.在平面直角坐标系中,把点向右平移2个单位,再向上平移1个单位记为一次“跳跃”,点A(-6,-2)经过第一次“跳跃”后的位置记为A1,点A1再经过一次“跳跃”后的位置记为A2,…以此类推.
(1)写出点A3的坐标:A3(0,1).
(2)写出点An的坐标:An(-6+2n,-2+n)(用含n的代数式表示).
(3)将A1、A2、A3…顺次连接起来,会发现它们都在一条直线上,记这条直线为l,则坐标系中的点M(201,101)与直线l的位置关系是(单选)③;①M在直线l上;②M在直线l的上方;③M在直线l的下方.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图是小明所在学校的平面示意图,请你以教学楼为坐标原点建立平面直角坐标系,描述学校其它建筑物的位置.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.计算:
(1)2$\sqrt{12}$-6$\sqrt{\frac{1}{3}}$+3$\sqrt{48}$
(2)(2$\sqrt{3}$-3$\sqrt{2}$)2-($\sqrt{6}$-$\sqrt{5}$)($\sqrt{6}$+$\sqrt{5}$)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如图,第1个正方形(设边长为2)的边为第一个等腰直角三角形的斜边,第一个等腰直角三角形的直角边是第2个正方形的边,第2个正方形的边是第2个等腰三角形的斜边…依此不断连接下去.通过观察与研究,写出第2016个正方形的边长a2016为(  )
A.a2016=4($\frac{1}{2}$)2015B.a2016=2($\frac{\sqrt{2}}{3}$)2015C.a2016=4($\frac{1}{2}$)2016D.a2016=2($\frac{\sqrt{2}}{2}$)2016

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.新定义函数:在y关于x的函数中,若0≤x≤1时,函数y有最大值和最小值,分别记ymax和ymin,且满足$\left\{\begin{array}{l}{{y}_{min}>0}\\{2{y}_{min}>{y}_{max}}\end{array}\right.$,则我们称函数y为“三角形函数”.
(1)若函数y=x+a为“三角形函数”,求a的取值范围;
(2)判断函数y=x2-$\frac{\sqrt{2}}{2}$x+1是否为“三角形函数”,并说明理由;
(3)已知函数y=x2-2mx+1,若对于0≤x≤1上的任意三个实数a,b,c所对应的三个函数值都能构成一个三角形的三边长,则求满足条件的m的取值范围.

查看答案和解析>>

同步练习册答案