精英家教网 > 初中数学 > 题目详情
如图,已知正方形ABCD,点E在BC边上,将△DCE绕某点G旋转得到△CBF,点F恰好在AB边上.
(1)请画出旋转中心G (保留画图痕迹),并连接GF,GE;
(2)若正方形的边长为2a,当CE=
a
a
时,S△FGE=S△FBE;当CE=
2a+
2
a
2
或EC=
2a-
2
a
2
2a+
2
a
2
或EC=
2a-
2
a
2
 时,S△FGE=3S△FBE
分析:(1)根据旋转图形的性质,点C与点B是对应点,点E点F是对应点,分别作线段BC、EF的垂直平分线的交点就是旋转中心点G.
(2)由旋转的性质可以得出FG=EG,∠FGE=90°,设EC=x,利用勾股定理及三角形的面积公式建立等量关系,就可以求出结论.
解答:解:(1)如图:分别作线段BC、EF的垂直平分线的交点就是旋转中心点G.

(2)∵G是旋转中心,且四边形ABCD是正方形,
∴FG=EG,∠FGE=90°
∵S△FGE=
FG2
2
,且由勾股定理,得2FG2=EF2
∴S△FGE=
EF2

设EC=x,则BF=x,BE=2a-x,在Rt△BEF中,由勾股定理,得
EF2=x2+(2a-x)2
∴S△FGE=
x2+(2a-x)2
4

∵S△FBE=
x(2a-x)
2

①当S△FGE=S△FBE时,则
x2+(2a-x)2
4
=
x(2a-x)
2

解得:x=a;
∴EC=a.
②当S△FGE=3S△FBE时,则
x2+(2a-x)2
4
=
x•(2a-x)
2
•3

∴2x2-4ax+a2=0,
解得:x=
2a+
2
a
2
或x=
2a-
2
a
2

∴EC=
2a+
2
a
2
或EC=
2a-
2
a
2

故答案为:a; 
2a+
2
a
2
或EC=
2a-
2
a
2
点评:本题考查了旋转对称图形的性质,正方形的性质,三角形的面积及勾股定理的运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知正方形ABCD的边AB与正方形AEFM的边AM在同一直线上,直线BE与DM交于点N.求证:BN⊥DM.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•北碚区模拟)如图,已知正方形ABCD,点E是BC上一点,点F是CD延长线上一点,连接EF,若BE=DF,点P是EF的中点.
(1)求证:DP平分∠ADC;
(2)若∠AEB=75°,AB=2,求△DFP的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正方形ABCD的对角线交于O,过O点作OE⊥OF,分别交AB、BC于E、F,若AE=4,CF=3,则EF的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正方形ABCD的对角线AC,BD相交于点O,E是AC上的一点,过点A作AG⊥BE,垂足为G,AG交BD于点F.
(1)试说明OE=OF;
(2)当AE=AB时,过点E作EH⊥BE交AD边于H.若该正方形的边长为1,求AH的长.

查看答案和解析>>

同步练习册答案