精英家教网 > 初中数学 > 题目详情
阅读材料:
如图,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.
我们可得出一种计算三角形面积的新方法:S△ABC=
1
2
ah,即三角形面积等于水平宽与铅垂高乘积的一半.
解答下列问题:
已知:直线l1:y=-2x+6与x轴交于点A,直线l2:y=x+3与y轴交于点B,直线l1、l2交于点C.
(1)建立平面直角坐标系,画出示意图(无需列表)并求出C点的坐标;
(2)利用阅读材料提供的方法求△ABC的面积.
(1)

联立两解析式:
y=-2x+6
y=x+3

解得:
x=1
y=4

故点C的坐标为(1,4).

(2)

如图所示:点A的坐标为(-3,0),点B的坐标为(0,6),
水平宽AE=4,铅直高BD=3,
∴S△ABC=
1
2
AE×BD=6.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

直线y=1.5x-3分别交x,y轴于A、B两点,O是原点.
(1)求出A、B两点的坐标;
(2)求△AOB的面积;
(3)过△AOB的顶点能不能画出直线把△AOB分成面积相等的两部分?若能,可以画出几条?请任选一条求出该直线所对应的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中,点B、C在x轴的负半轴上,点A在y轴的负半轴上,以AC为直径的圆与AB的延长线交于点D,CD=AO,如果AO>BO,且AO、BO是关于x的二次方程x2-14x+48=0的两个根.
(1)求点D的坐标;
(2)定义:在直角坐标系中,有点M(m,n),对于直线y=kx+b,当x=m时,y=km+b>n,则称点M在直线下方;当x=m时,y=km+b=n,则称点M在直线上;当x=m时,y=km+b<n,则称点M在直线上方.
请你根据上述定义解决下列问题:
若点P在直径AC所在直线上,且AC=4AP,直线l经过点P和Q(6,-16),请你判断点D和直线l的位置关系.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在直角坐标系中,⊙O1经过坐标原点O,分别与x轴正半轴、y轴正半轴交于点A、B.
(1)如图,过点A作⊙O1的切线与y轴交于点C,点O到直线AB的距离为
12
5
,sin∠ABC=
3
5
,求直线AC的解析式;
(2)若⊙O1经过点M(2,2),设△BOA的内切圆的直径为d,试判断d+AB的值是否会发生变化?如果不变,求出其值;如果变化,求其变化的范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,点A的坐标为(4,0),点P是第一象限内直线x+y=6上一点,O是坐标原点,
(1)设P(x,y),求△OPA的面积与x的函数解析式;
(2)当S=10时,求P点的坐标;
(3)在直线x+y=6上求一点P,使△POA是以OA为底边的等腰三角形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:y是x一次函数,且当x=2时,y=-3;且当x=-2时,y=1
(1)试求y与x之间的函数关系式并画出图象;
(2)在图象上标出与x轴、y轴的交点坐标;
(3)当x取何值时,y=5?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,点A、B分别在x轴、y轴的正半轴上,且满足
OB-3
+|OA-1|=0.
(1)求点A、B的坐标;
(2)若OC=
3
,求点O到直线CB的距离;
(3)在(2)的条件下,若点P从C点出发以一个单位每秒的速度沿直线CB从点C到B的方向运动,连接AP.设△ABP的面积为S,点P的运动时间为t秒,求S与t的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,四边形DEFG是△ABC的内接矩形,如果△ABC的高线AH长8cm,底边BC长10cm,设DG=xcm,DE=ycm,求y关于x的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货量的一半.电视机与洗衣机的进价和售价如表:
类 别电视机洗衣机
进价(元/台)18001500
售价(元/台)20001600
计划购进电视机和洗衣机共100台,商店最多可筹集资金161 800元.
(1)请你帮助商店算一算有多少种进货方案?(不考虑除进价之外的其它费用)
(2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多?并求出最多利润.(利润=售价-进价)

查看答案和解析>>

同步练习册答案