【题目】为了提高学生的综合素质,某中学成立了以下社团:A.机器人,B.围棋,C.羽毛球,D.电影配音.每人只能加入一个社团,为了解学生参加社团的情况,从参加社团的学生中随机抽取了部分学生进行调查,并将调查结果绘制成如图两幅不完整的统计图,其中图(1)中A所占扇形的圆心角为36°.
根据以上信息,解答下列问题:
(1)这次被调查的学生共有 人,B所占扇形的圆心角是 度;
(2)请你将条形统计图补充完整;
(3)若该校共有1000名学生加人了社团,请你估计这1000名学生中有多少人参加了羽毛球社团;
(4)在机器人社团活动中,由于甲、乙、丙、丁四人平时的表现优秀,现决定从这四人中任选两名参加机器人大赛,用树状图或列表法求恰好选中甲、乙两位同学的概率.
【答案】(1)200;144;(2)见解析;(3)300人;(4)
【解析】
(1)由A类有20人,所占扇形的圆心角为36°,即可求得这次被调查的学生数;用这次被调查的学生数乘以B所占的百分比,即可求得B所占扇形的圆心角;
(2)首先求得C项目对应人数,即可补全统计图;
(3)利用样本估计总体,用该校1000学生数乘以参加了羽毛球社团的人数所占的百分比即可得到结论;
(4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中甲、乙两位同学的情况,再利用概率公式即可求得答案.
解:(1)∵A类有20人,所占扇形的圆心角为36°,
∴这次被调查的学生共有:20÷=200(人);
B所占扇形的圆心角是:360°×=144°.
故答案为:200,144;
(2)C项目对应人数为:200﹣20﹣80﹣40=60(人);
补充如图.
(3)1000×=300(人).
答:这1000名学生中有300人参加了羽毛球社团;
(4)画树状图得:
∵共有12种等可能的情况,恰好选中甲、乙两位同学的有2种,
∴P(选中甲、乙)==.
科目:初中数学 来源: 题型:
【题目】已知二次函数(是常数,)的与的部分对应值如下表:
0 | 2 | ||||
6 | 0 | 6 |
下列结论:
①;
②当时,函数最小值为;
③若点,点在二次函数图象上,则;
④方程有两个不相等的实数根.
其中,正确结论的序号是__________________.(把所有正确结论的序号都填上)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:点为图形上任意一点,点为图形上任意一点,若点与点之间的距离始终满足,则称图形与图形相离.
(1)已知点、、、.
①与直线相离的点是 ;
②若直线与相离,求的取值范围;
(2)设直线、直线及直线围成的图形为,⊙的半径为,圆心的坐标为,直接写出⊙与图形相离的的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,直线与轴交于点,与轴交于点,抛物线经过点、.
(1)求、满足的关系式及的值.
(2)当时,若的函数值随的增大而增大,求的取值范围.
(3)如图,当时,在抛物线上是否存在点,使的面积为1?若存在,请求出符合条件的所有点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与x轴相交于点A(﹣3,0)、点B(1,0),与y轴交于点C(0,3),点D是抛物线上一动点,联结OD交线段AC于点E.
(1)求这条抛物线的解析式,并写出顶点坐标;
(2)求∠ACB的正切值;
(3)当△AOE与△ABC相似时,求点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中直线y=x﹣2与y轴相交于点A,与反比例函数在第一象限内的图象相交于点B(m,2).
(1)求反比例函数的关系式;
(2)将直线y=x﹣2向上平移后与反比例函数图象在第一象限内交于点C,且△ABC的面积为18,求平移后的直线的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点的坐标为,过点作轴的垂线交直线于点,以原点为圆心,的长为半径画弧交轴正半轴于点;再过点作轴的垂线交直线于点,以原点为圆心,的长为半径画弧交轴正半轴于点,...,按此做法进行下去,则的长是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知,是的平分线,是射线上一点,.动点从点出发,以的速度沿水平向左作匀速运动,与此同时,动点从点出发,也以的速度沿竖直向上作匀速运动.连接,交于点.经过、、三点作圆,交于点,连接、.设运动时间为,其中.
(1)求的值;
(2)是否存在实数,使得线段的长度最大?若存在,求出的值;若不存在,说明理由.
(3)求四边形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知圆O的直径AB垂直于弦CD于点E,连接CO并延长交AD于点F,且CF⊥AD.
(1)证明:点E是OB的中点;
(2)若AB=8,求CD的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com