精英家教网 > 初中数学 > 题目详情
三角形中,顶角等于36°的等腰三角形称为黄金三角形,如图1,在△ABC中,已知:AB=AC,且∠A=36°.
(1)在图1中,用尺规作AB的垂直平分线交AC于D,并连接BD(保留作图痕迹,不写作法);
(2)△BCD是不是黄金三角形?如果是,请给出证明;如果不是,请说明理由;
(3)设
BC
AC
=k
,试求k的值;
(4)如图2,在△A1B1C1中,已知A1B1=A1C1,∠A1=108°,且A1B1=AB,请直接写出
BC
B1C1
的值.
精英家教网
分析:(1)可根据基本作图中线段垂直平分线的作法进行作图;
(2)求得各个角的度数,根据题意进行判断;
(3)通过证明△BDC∽△ABC,根据相似三角形的性质求解即可;
(4)由黄金三角形的性质可知
BC
B1C1
的值.
解答:精英家教网解:(1)如图所示;(2分)

(2)△BCD是黄金三角形.(3分)
证明如下:∵点D在AB的垂直平分线上,
∴AD=BD,
∴∠ABD=∠A.
∵∠A=36°,AB=AC,
∴∠ABC=∠C=72°,
∴∠ABD=∠DBC=36°.
又∵∠BDC=∠A+∠ABD=72°,
∴∠BDC=∠C,
∴BD=BC,
∴△BCD是黄金三角形.(6分)

(3)设BC=x,AC=y,
由(2)知,AD=BD=BC=x.
∵∠DBC=∠A,∠C=∠C,
∴△BDC∽△ABC,
BC
AC
=
DC
BC
,即
x
y
=
y-x
x

整理,得x2+xy-y2=0,
解得x=
-1±
5
2
y
./
因为x、y均为正数,所以k=
x
y
=
5
-1
2
.(11分)

(4)
3-
5
2
.(14分)
理由:延长BC到E,使CE=AC,连接AE.
∵∠A=36°,AB=AC,
∴∠ACB=∠B=72°,
∴∠ACE=180°-72°=108°,
∴∠ACE=∠B1A1C1
∵A1B1=AB,
∴AC=CE=A1B1=A1C1
∴△ACE≌△B1A1C1
∴AE=B1C1
由(3)知,
BC
AB
=
BC
AC
=
5
-1
2
AB
AE
=
5
-1
2

BC
B1C1
=
BC
AE
=
BC
AB
×
AB
AE
=
5
-1
2
×
5
-1
2
=
3-
5
2
点评:此题考查的知识综合性较强,能够熟记黄金比的值,根据黄金比进行计算.注意根据题目中定义的黄金三角形进行分析计算.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

三角形中,顶角等于36°的等腰三角形称为黄金三角形,如图1,在△ABC中,已知:ABAC,且∠A=36°.

 

 

  1.在图1中,用尺规作AB的垂直平分线交ACD,并连接BD(保留作图痕迹,不写作法);

   2.△BCD是不是黄金三角形,如果是,请给出证明;如果不是,请说明理由;

   3.设,试求k的值;

  4.如图2,在△A1B1C1中,已知A1B1A1C1,∠A1=108°,且A1B1AB

请直接写出的值.

 

 

查看答案和解析>>

科目:初中数学 来源:2011-2012学年安徽省马鞍山六中中考模拟数学卷 题型:解答题

三角形中,顶角等于36°的等腰三角形称为黄金三角形,如图1,在△ABC中,已知:ABAC,且∠A=36°.

【小题1】在图1中,用尺规作AB的垂直平分线交ACD,并连接BD(保留作图痕迹,不写作法);
【小题2】△BCD是不是黄金三角形,如果是,请给出证明;如果不是,请说明理由;
【小题3】设,试求k的值;
【小题4】如图2,在△A1B1C1中,已知A1B1A1C1,∠A1=108°,且A1B1AB
请直接写出的值.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年安徽省中考模拟数学卷 题型:解答题

三角形中,顶角等于36°的等腰三角形称为黄金三角形,如图1,在△ABC中,已知:ABAC,且∠A=36°.

 

 

   1.在图1中,用尺规作AB的垂直平分线交ACD,并连接BD(保留作图痕迹,不写作法);

   2.△BCD是不是黄金三角形,如果是,请给出证明;如果不是,请说明理由;

   3.设,试求k的值;

   4.如图2,在△A1B1C1中,已知A1B1A1C1,∠A1=108°,且A1B1AB

请直接写出的值.

 

 

查看答案和解析>>

科目:初中数学 来源:2013年安徽省中考数学模拟试卷(六)(解析版) 题型:解答题

三角形中,顶角等于36°的等腰三角形称为黄金三角形,如图1,在△ABC中,已知:AB=AC,且∠A=36°.
(1)在图1中,用尺规作AB的垂直平分线交AC于D,并连接BD(保留作图痕迹,不写作法);
(2)△BCD是不是黄金三角形?如果是,请给出证明;如果不是,请说明理由;
(3)设,试求k的值;
(4)如图2,在△A1B1C1中,已知A1B1=A1C1,∠A1=108°,且A1B1=AB,请直接写出的值.

查看答案和解析>>

同步练习册答案