精英家教网 > 初中数学 > 题目详情
△ABC中,AB=2,BC=4,CD⊥AB于D.
(1)如图①,AE⊥BC于E,求证:CD=2AE;

(2)如图②,P是AC上任意一点(P不与A、C重合),过P作PE⊥BC于E,PF⊥AB于F,求证:2PE+PF=CD;

(3)在(2)中,若P为AC的延长线上任意一点,其它条件不变,请你在备用图中画出图形,并探究线段PE、PF、CD之间的数量关系.
分析:(1)分别以AB、BC边为底边,利用△ABC的面积的两种不同表示列式整理即可得证;
(2)连接PB,根据△ABC的面积等于△ABP和△BCP的面积的和,然后列式整理即可得证;
(3)作出图形,连接PB,然后根据△ABP的面积等于△ABC的面积和△PBC的面积的和,列式整理即可得解.
解答:(1)证明:S△ABC=
1
2
AB•CD=
1
2
BC•AE,
∵AB=2,BC=4,
1
2
×2×CD=
1
2
×4×AE,
即CD=2AE;

(2)证明:如图②,连接PB,则S△ABC=S△ABP+S△BCP
1
2
AB•CD=
1
2
AB•PF+
1
2
BC•PE,
∵AB=2,BC=4,
1
2
×2×CD=
1
2
×2×PF+
1
2
×4×PE,
即CD=PF+2PE,
故2PE+PF=CD;

(3)解:如图③,连接PB,则S△ABP=S△ABC+S△PBC
1
2
AB•PF=
1
2
AB•CD+
1
2
BC•PE,
∵AB=2,BC=4,
1
2
×2×PF=
1
2
×2×CD+
1
2
×4×PE,
即PF=CD+2PE.
点评:本题综合考查了三角形的知识,把同一个三角形的面积采用不同方法列式表示出来,然后再把已知数据代入进行计算求解,所以(2)(3)两小题作出辅助线把三角形分割成两个三角形是解题的关键,面积法也是解三角形问题常用的方法之一,需熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,∠A=36°,
(1)用尺规作图的方法,过B点作∠ABC的平分线交AC于D(不写作法,保留作图痕迹);
(2)求证:BC=BD=AD;
(3)求证:AD2=AC•DC;
(4)设
CDDA
=x,求x.

查看答案和解析>>

科目:初中数学 来源: 题型:

15、如图,在△ABC中,AB=AC,点D,E在直线BC上运动.如果∠DAE=l05°,△ABD∽△ECA,则∠BAC=
30
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网△ABC中,AB=AC,D、E分别是AB、AC的中点,若AB=4,BC=6,则△ADE的周长是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

13、在△ABC中,AB=AC,BD是△ABC中线,已知△ABD和△BDC的周长之差为6,△ABC的周长是30,求这个等腰三角形的三边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在钝角△ABC中,AB=AC,以BC为直径作⊙O,⊙O与BA、CA的延长线分别交于D、E两点精英家教网,连接AO、BE、DC.
(1)求证:△ABO∽△CBD;
(2)若AB=2AD,且BC=2,求∠ACB的度数.

查看答案和解析>>

同步练习册答案