(1)如图①,若BC=6,AC=4,∠C=60°,求△ABC的面积S△ABC ;
(2)如图②,若BC=a,AC=b,∠C=α,求△ABC的面积S△ABC ;
(3)如图③,四边形ABCD,若AC=m,BD=n,对角线AC、BD交于O点,它们所成
的锐角为β.求四边形ABCD的面积S四边形ABCD .
(1)如图①,过点A作AH⊥BC,垂足为H.
在Rt△AHC中, =sin60°,
∴AH=AC·sin60°=4×=2.
∴S△ABC=×BC×AH=×6×2=6.…………………………………………3分
(2)如图②,过点A作AH⊥BC,垂足为H.
在Rt△AHC中,=sinα,
∴AH=AC·sinα=b sinα.
∴S△ABC=×BC×AH=ab sinα.……………………………………………………5分
(3)如图③,分别过点A,C作AH⊥BD,CG⊥BD,垂足为H,G.
在Rt△AHO与Rt△CGO中,AH=OAsinβ,CG=OCsinβ;
于是,S△ABD=×BD×AH=n×OAsinβ;
S△BCD=×BD×CG=n×OCsinβ;
∴S四边形ABCD= S△ABD+S△BCD=n×OAsinβ+n×OCsinβ=n×(OA+OC)sinβ
=mnsinβ.……………………………………………………………………8分
科目:初中数学 来源: 题型:
如图,一次函数的图象与轴交于点(),与函数()的图象交于点().
(1)求和的值;
(2)将函数()的图象沿轴向下平移3个单位后交x轴于点.若点是平移后函数图象上一点,且△的面积是3,直接写出点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
反比例函数y= (k为常数,k≠0)的图象是双曲线.当k>0时,双曲线两个分支分别在
一、三象限,在每一个象限内,y随x的增大而减小(简称增减性);反比例函数的图象关于
原点对称(简称对称性).
这些我们熟悉的性质,可以通过说理得到吗?
【尝试说理】
我们首先对反比例函数y=(k>0)的增减性来进行说理.
如图,当x>0时.
在函数图象上任意取两点A、B,设A(x1,),B(x2,),
且0<x1< x2.
下面只需要比较和的大小.
—= .
∵0<x1< x2,∴x1-x2<0,x1 x2>0,且 k>0.
∴<0.即.
这说明:x1< x2时,.也就是:自变量值增大了,对应的函数值反而变小了.
即:当x>0时,y随x的增大而减小.
同理,当x<0时,y随x的增大而减小.
(1)试说明:反比例函数y= (k>0)的图象关于原点对称.
【运用推广】
(2)分别写出二次函数y=ax2 (a>0,a为常数)的对称性和增减性,并进行说理.
对称性: ;
增减性: .
说理:
(3)对于二次函数y=ax2+bx+c (a>0,a,b,c为常数),请你从增减性的角度,简要解释为何当x=— 时函数取得最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
已知二次函数y=a(x-1)2-4的图象经过点(3,0).
(1)求a的值;
(2)若A(m,y1)、B(m+n,y2)(n>0)是该函数图象上的两点,当y1=y2时,求m、n之间的数量关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com