精英家教网 > 初中数学 > 题目详情
如图,已知直线,点A的坐标是(4,0),点D为x轴上位于点A右边的某一点,点B为直线上的一点,以点A、B、D为顶点作正方形.

(1)若图①仅看作符合条件的一种情况,求出所有符合条件的点D的坐标;
(2)在图①中,若点P以每秒1个单位长度的速度沿直线从点O移动到点B,与此同时点Q以相同的速度从点A出发沿着折线A-B-C移动,当点P到达点B时两点停止运动.试探究:在移动过程中,△PAQ的面积最大值是多少?
(1)(7,0)或(16,0)或(28,0);(2)或3;

试题分析:(1)仔细分析题意,正确画出图形,根据正方形的性质求解即可; 
(2)分①当0<t≤3时,②当3<t≤5时,根据三角形的面积公式及二次函数的性质求解.
(1)(7,0)或(16,0)或(28,0)
提示:除已给图外还有两种情况,如下图.
 
(2)①当0<t≤3时,过点P作PE⊥x轴,垂足为点E.
AQ=OP=t,OE=t,AE=4-t.   
SAPQ=AQ·AE=t(4-t)=(t-2+ 
当t=时,SAPQ的最大值为
②当3<t≤5时,过点P作PE⊥x轴,垂足为点E,过点Q作QF⊥x轴,垂足为点F

OP=t,PE=t,OE=t,AE=4-t. 
QF=3,AF=BQ=t-3,EF=AE+AF=1+t  
SAPQ="S" 梯形PEFQ-SPEA-SQFA=(PE+QF)·EF-PE·AE-QF·AF
=t +3)·(1+t)-·t·(4-t)-×3·(t-3)=(t-2+
∵抛物线开口向上,
∴当t=5时,SAPQ的最大值为3>
∴在移动过程中,△PAQ的面积最大值是3.
点评:此类问题难度较大,在中考中比较常见,一般在压轴题中出现,需特别注意.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=﹣x2+4与x轴交于A、B两点,与y轴交于C点,点P是抛物线上的一个动点且在第一象限,过点P作x轴的垂线,垂足为D,交直线BC于点E.

(1)求点A、B、C的坐标和直线BC的解析式;
(2)求△ODE面积的最大值及相应的点E的坐标;
(3)是否存在以点P、O、D为顶点的三角形与△OAC相似?若存在,请求出点P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,过点A(0,4)的圆的圆心坐标为C(2,0),B是第一象限圆弧上的一点,且BC⊥AC,抛物线经过C、B两点,与x轴的另一交点为D。

(1)点B的坐标为(              ),抛物线的表达式为       .
(2)如图2,求证:BD//AC;
(3)如图3,点Q为线段BC上一点,且AQ=5,直线AQ交⊙C于点P,求AP的长。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2+bx+2交x轴于A(﹣1,0),B(4,0)两点,交y轴于点C,与过点C且平行于x轴的直线交于另一点D,点P是抛物线上一动点.

(1)求抛物线解析式及点D坐标;
(2)点E在x轴上,若以A,E,D,P为顶点的四边形是平行四边形,求此时点P的坐标;
(3)过点P作直线CD的垂线,垂足为Q,若将△CPQ沿CP翻折,点Q的对应点为Q′.是否存在点P,使Q′恰好落在x轴上?若存在,求出此时点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若二次函数y=ax2+bx+c的x与y的部分对应值如下表:
x
-7
-6
-5
-4
-3
-2
y
-27
-13
-3
3
5
3
则当x=1时,y的值为   (  )  
A.5        B.-3          C.-13         D.-27

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,抛物线的顶点为P(-2,2)与y轴交于点A(0,3),若平移该抛物线使其顶P沿直线移动到点,点A的对应点为,则抛物线上PA段扫过的区域(阴影部分)的面积为     .

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

某人乘雪橇沿如图所示的斜坡笔直滑下,滑下的路S(米)与时间t(秒)间的关系式为S=10t+t2,若滑到坡底的时间为2秒,则此人下滑的高度为(    )
A.24米B.12米C.12D.11米

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

先阅读理解下面的例题,再按要求解答后面的问题
例题:解一元二次不等式>0.解:令y=,画出y=如图所示,

由图像可知:当x<1或x>2时,y>0.所以一元二次不等式>0的解集为x<1或x>2.
填空:(1)<0的解集为                              
(2)>0的解集为                              
用类似的方法解一元二次不等式>0.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

请写出一个二次函数,使它同时具有如下性质:
①图象关于直线对称;②当x=2时,y>0;③当x=-2时,y<0.
答:           

查看答案和解析>>

同步练习册答案