精英家教网 > 初中数学 > 题目详情
如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A、D重合.连接BE、EC.试猜想线段BE和EC的数量关系和位置关系,并证明你的猜想.
p;【答案】线段BE和EC的数量关系是:BE=EC,……1分
位置关系是:BE⊥EC. …………………………2分
证明如下:
∵∠BAC=90°,∠EAD=∠EDA=45°,
∴∠BAE=90°+45°=135°,∠CDE=180°-45°=135°,
∴∠BAE=∠CDE,         ……………………………………………………4分
又∵AC=2AB,点D是AC的中点,∴AD=DC,………………………………6分
而AE=DE,∴△ABE≌△DCE,…………………………………………………5分
∴BE=EC,∠AEB=∠DEC, ……………………………………………………7分
∴∠BEC=∠BED+∠DEC=∠BED+∠AEB=∠AED=90°,…………………8分
∴BE⊥EC.    ………………………………………………………………………9分解析:
p;【解析】先用边角边证明△ABE与△EDC全等证出BE=CE,然后用角的等量代换证明∠DEC=90°,从而得出BE⊥EC
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•莆田质检)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,点E是AB上一点,以AE为直径的⊙O过点D,且交AC于点F.
(1)求证:BC是⊙O的切线;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分别是∠BAC和∠ABC的平分线,它们相交于点D,求点D到BC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,将三角板中一个30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC、BC相交于点E、F,且使DE始终与AB垂直.
(1)画出符合条件的图形.连接EF后,写出与△ABC一定相似的三角形;
(2)设AD=x,CF=y.求y与x之间函数解析式,并写出函数的定义域;
(3)如果△CEF与△DEF相似,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,BD⊥AC,sinA=
3
5
,则cos∠CBD的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连接DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以
5
cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s).
(1)当点P在线段DE上运动时,线段DP的长为
(t-2)
(t-2)
cm,(用含t的代数式表示).
(2)当点N落在AB边上时,求t的值.
(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式.

查看答案和解析>>

同步练习册答案