精英家教网 > 初中数学 > 题目详情
14.如图,直线a∥b,将三角尺的直角顶点放在直线b上,∠1=35°,求∠2的度数.

分析 根据平角的定义求出∠3,再根据两直线平行,同位角相等可得∠2=∠3.

解答 解:如图,∵∠1=35°,
∴∠3=180°-35°-90°=55°,
∵a∥b,
∴∠2=∠3=55°.

点评 本题考查了平行线的性质,熟记性质并准确识图是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

4.已知∠A=60°,则∠A的补角是(  )
A.160°B.120°C.60°D.30°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.“2016年县球类运动会”的赛事共有三项:A.篮球,B.排球,C.乒乓球.小明和小刚参加了该项赛事的志愿者服务工作,组委会随机将志愿者分配到三个项目组.
(1)小明被分配到“篮球”项目组的概率为$\frac{1}{3}$;
(2)用树状图或列表法求小明和小刚被分配到不同项目组的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.用反证法证明“∠A≥60°”时,应假设∠A<60°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.某校研究性学习小组以“学生到学校交通工具类型”为主题对全校学生进行随机抽样调查,调查的项目有:公共汽车、小车、摩托车、自行车、其它(每位同学仅选一项).根据调查结果绘制了如下不完整的频数分布表和扇形统计图:
交通方式频数(人数)频率
公共汽车m0.25
小车240.20
摩托车36n
自行车180.15
其它120.10
请根据图表信息解答下列问题:
(1)本次共抽样调查120个学生;
(2)填空:频数分布表中的m=30,n=0.3;
(3)在扇形统计图中,请计算出“摩托车”所在的扇形的圆心角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交直线DC于点F.
(1)如图1,当点G在BC边上时,显然$\frac{DC}{DF}$=1,此时$\frac{AD}{AB}$=2.
(2)如图2,当点G在矩形ABCD内部时,①若$\frac{AD}{AB}$=$\sqrt{2}$时,求$\frac{DC}{DF}$的值;②若$\frac{DC}{DF}$=k时,求$\frac{AD}{AB}$的值.
(3)当点G在矩形ABCD外部且$\frac{DC}{DF}$=k,则$\frac{AD}{AB}$的值为$\frac{2\sqrt{k}}{k}$ (请直接写出结论即可).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.△ABC是⊙O的内接三角形,BC=$\sqrt{3}$.
(1)如图1,若AC是⊙O的直径,∠BAC=60°,延长BA到点D,使得DA=$\frac{1}{2}$BA,过点D作直线l⊥BD,垂足为点D,请将图形补充完整,判断直线l和⊙O的位置关系并说明理由.
(2)如图2,∠B=120°,点D是优弧$\widehat{AC}$的中点,DE∥BC交BA延长线于点E,BE=2,请将图形补充完整并求AB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.已知,在Rt△ABC中,∠ACB=90°,请利用直角三角形全等的HL判定定理,求作Rt△DEF,使Rt△DEF≌Rt△ABC.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.下列说法中,不正确的是(  )
A.2是(-2)2的算术平方根B.±2是(-2)2的平方根
C.-2是(-2)2的算术平方根D.-2是(-2)3的立方根

查看答案和解析>>

同步练习册答案