精英家教网 > 初中数学 > 题目详情

如图所示,为了求出湖两岸的A、B两点之间的距离,一个观测者在点C设桩,使三角形ABC为直角三角形,通过测量得到AC长160米,BC长128米,问从点A穿过湖到点B的距离是

[  ]

A.96米
B.100米
C.86米
D.90米
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

朝晖初中的科技活动搞得有声有色.某班的小赵对跨湖桥博物馆富有创意的独木舟形象设计很有兴趣,他回家后将一正五边形纸片沿其对称轴对折.旋转放置,做成独木舟模型.如图所示,该正五边形ABCDE中,O为中心,延长AO交CD于点M.若OM长为
6
,AN为独木舟船头A到船底的距离,为了计算AN+
1
2
AM
的值,小赵所在的科技小组进行了热烈的讨论:
小王:AM显然是此正五边形的对称轴.
小李:AN与AM似乎无法直接求出,应该用整体思想来求AN+
1
2
AM
的值.
小朱:注意到AM⊥CM,AN⊥BC,则AM与AN可看成是三角形的高,能否利用面积法来求呢?
小杨:若将点O与正五边形的各顶点连接,则将此正五边形的面积五等分…精英家教网
在这些同学的提示下,小赵求出了AN+
1
2
AM
=
 

查看答案和解析>>

科目:初中数学 来源: 题型:044

如图所示,为了测量某湖的宽AB,在AB两处找出两个标志点,然后在岸边找到一点O,沿AO方向确定一点D,作CD平行于AB,使C点与BO在同一条直线上,这时测得AO=42.5 mOD=3 mCD=4.13 m,试求出湖宽AB.(精确到 0.1 m)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

朝晖初中的科技活动搞得有声有色.某班的小赵对跨湖桥博物馆富有创意的独木舟形象设计很有兴趣,他回家后将一正五边形纸片沿其对称轴对折.旋转放置,做成独木舟模型.如图所示,该正五边形ABCDE中,O为中心,延长AO交CD于点M.若OM长为数学公式,AN为独木舟船头A到船底的距离,为了计算数学公式的值,小赵所在的科技小组进行了热烈的讨论:
小王:AM显然是此正五边形的对称轴.
小李:AN与AM似乎无法直接求出,应该用整体思想来求数学公式的值.
小朱:注意到AM⊥CM,AN⊥BC,则AM与AN可看成是三角形的高,能否利用面积法来求呢?
小杨:若将点O与正五边形的各顶点连接,则将此正五边形的面积五等分…
在这些同学的提示下,小赵求出了数学公式=________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

朝晖初中的科技活动搞得有声有色.某班的小赵对跨湖桥博物馆富有创意的独木舟形象设计很有兴趣,他回家后将一正五边形纸片沿其对称轴对折.旋转放置,做成独木舟模型.如图所示,该正五边形ABCDE中,O为中心,延长AO交CD于点M.若OM长为
6
,AN为独木舟船头A到船底的距离,为了计算AN+
1
2
AM
的值,小赵所在的科技小组进行了热烈的讨论:
小王:AM显然是此正五边形的对称轴.
小李:AN与AM似乎无法直接求出,应该用整体思想来求AN+
1
2
AM
的值.
小朱:注意到AM⊥CM,AN⊥BC,则AM与AN可看成是三角形的高,能否利用面积法来求呢?
小杨:若将点O与正五边形的各顶点连接,则将此正五边形的面积五等分…
精英家教网

在这些同学的提示下,小赵求出了AN+
1
2
AM
=______.

查看答案和解析>>

同步练习册答案