【题目】如图①,已知⊙O的半径为1,PQ是⊙O的直径,n个相同的正三角形沿PQ排成一列,所有正三角形都关于PQ对称,其中第一个△A1B1C1的顶点A1与点P重合,第二个△A2B2C2的顶点A2是B1C1与PQ的交点……最后一个△AnBnCn的顶点Bn,Cn在圆上.
(1)如图②,当n=1时,求正三角形的边长a1.
(2)如图③,当n=2时,求正三角形的边长a2.
(3)如图①,求正三角形的边长an(用含n的代数式表示).
【答案】(1) a1=.(2) a2=’ (3) an=.
【解析】分析:(1)设PQ与 交于点D,连接,得出OD= -O,用含的代数式表示OD,在△OD中,根据勾股定理求出正三角形的边长;(2)设PQ与 交于点E,连接O,得出OE=E-O,用含的代数式表示OE,在△OE中,根据勾股定理求出正三角形的边长;(3)设PQ与 交于点F,连接O,得出OF=F-O,用含an的代数式表示OF,在△OF中,根据勾股定理求出正三角形的边长an.
本题解析:
(1)易知△A1B1C1的高为,则边长为,
∴a1=.
(2)设△A1B1C1的高为h,则A2O=1-h,连结B2O,设B2C2与PQ交于点F,则有OF=2h-1.
∵B2O2=OF2+B2F2,∴1=(2h-1)2+ .
∵h=a2,∴1=(a2-1)2+a22,
解得a2= .
(3)同(2),连结BnO,设BnCn与PQ交于点F,则有BnO2=OF2+BnF2,
即1=(nh-1)2+ .
∵h= an,∴1=an2+ ,
解得an= .
科目:初中数学 来源: 题型:
【题目】如图,长方形AOBC在直角坐标系中,点A在y轴上,点B在x轴上,已知点C的坐标是(8,4).
(1)求对角线AB所在直线的函数关系式;
(2)对角线AB的垂直平分线MN交x轴于点M,连接AM,求线段AM的长;
(3)若点P是直线AB上的一个动点,当△PAM的面积与长方形OABC的面积相等时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,ABCD中,点E、F在BD上,且BF=DE.
(1)写出图中所有你认为全等的三角形;
(2)连接AF、CE,四边形AFCE是平行四边形吗?请证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,ABCD中,AB=4,BC=5,∠ABC=60°,对角线AC,BD交于点O,过点O作OE⊥AD,则OE等于( )
A.
B.2
C.2
D.2.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=﹣x2+bx+c与x轴正半轴交于点A(3,0),与y轴交于点B(0,3),点P是x轴上一动点,过点P作x轴的垂线交抛物线于点C,交直线AB于点D,设P(x,0).
(1)求抛物线的函数表达式;
(2)当0<x<3时,求线段CD的最大值;
(3)在△PDB和△CDB中,当其中一个三角形的面积是另一个三角形面积的2倍时,求相应x的值;
(4)过点B,C,P的外接圆恰好经过点A时,x的值为 .(直接写出答案)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com