【题目】位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.
某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水 平步道上架设测角仪,先在点处测得观星台最高点的仰角为,然后沿方向前进到达点处,测得点的仰角为.测角仪的高度为,
求观星台最高点距离地面的高度(结果精确到.参考数据: );
“景点简介”显示,观星台的高度为,请计算本次测量结果的误差,并提出一条减小误差的合理化建议.
【答案】(1)12.3m;(2)0.3m,多次测量,求平均值
【解析】
(1)过点A作AE⊥MN交MN的延长线于点E,交BC的延长线于点D,根据条件证出四边形BMNC为矩形、四边形CNED为矩形、三角形ACD与三角形ABD均为直角三角形,设AD的长为xm,则CD=AD=xm,BD=BC+CD=(16+x)m,在Rt△ABD中,解直角三角形求得AD的长度,再加上DE的长度即可;
(2)根据(1)中算的数据和实际高度计算误差,建议是多次测量求平均值.
解:(1)如图,过点A作AE⊥MN交MN的延长线于点E,交BC的延长线于点D,
设AD的长为xm,
∵AE⊥ME,BC∥MN,
∴AD⊥BD,∠ADC=90°,
∵∠ACD=45°,
∴CD=AD=xm,BD=BC+CD=(16+x)m,
由题易得,四边形BMNC为矩形,
∵AE⊥ME,
∴四边形CNED为矩形,
∴DE=CN=BM=,
在Rt△ABD中,,
解得:,
即AD=10.7m,AE=AD+DE=10.7+1.6=12.3m,
答:观星台最高点距离地面的高度为12.3m.
(2)本次测量结果的误差为:12.6-12.3=0.3m,
减小误差的合理化建议:多次测量,求平均值.
科目:初中数学 来源: 题型:
【题目】如图1所示,在平面直角坐标系中,抛物线与轴交于点和点,与轴交于点.
(1)求抛物线的表达式;
(2)如图2,将抛物线先向左平移1个单位,再向下平移3个单位,得到抛物线,若抛物线与抛物线相交于点,连接,,.
①求点的坐标;
②判断的形状,并说明理由;
(3)在(2)的条件下,抛物线上是否存在点,使得为等腰直角三角形,若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABO在直角坐标系中,AB⊥x轴于点B,AO=10,sin∠AOB=.
(1)若反比例函数y=(x>0)的图象经过AO的中点C,求k的值;
(2)在(1)的条件下,若反比例函数y=(x>0)的图象与AB交于点D,当点C,D位于直线l:y=﹣x+b的异侧时,求b的取值范围;
(3)若点D关于y轴的对称点为E,当反比例函数y=的图象和线段AE有公共点时,直接写出k的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】九年级一班邀请、、、、五位评委对甲、乙两位同学的才艺表演打分,并组织全班50名同学对两人民意测评投票,绘制了如下的打分表和不完整的条形统计图:
五位评委的打分表
A | B | C | D | E | |
甲 | 89 | 91 | 93 | 94 | 86 |
乙 | 88 | 87 | 90 | 98 | 92 |
并求得了五位评委对甲同学才艺表演所打分数的平均分和中位数:
(分);中位数是91分.
(1)求五位评委对乙同学才艺表演所打分数的平均分和中位数;
(2)________,并补全条形统计图;
(3)为了从甲、乙两人中只选拔出一人去参加艺术节演出,班级制定了如下的选拔规则:
选拔规则:选拔综合分最高的同学参加艺术节演出.其中,综合分=才艺分测评分;
才艺分=五位评委所打分数中去掉一个最高分和一个最低分,再算平均分;测评分=“好”票数×2分+“较好”票数×1分+“一般”票数×0分
①当时,通过计算说明应选拔哪位同学去参加艺术节演出?
②通过计算说明的值不能是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在全体丽水人民的努力下,我市剿灭劣V类水“河道清淤”工程取得了阶段性成果,如表是全市十个县(市、区)指标任务数的统计表;如图是截止2017年3月31日和截止5月4日,全市十个县(市、区)指标任务累计完成数的统计图.
全市十个县(市、区)指标任务数统计表
县(市、区) | 任务数(万方) |
A | 25 |
B | 25 |
C | 20 |
D | 12 |
E | 13 |
F | 25 |
G | 16 |
H | 25 |
I | 11 |
J | 28 |
合计 | 200 |
(1)截止3月31日,完成进度(完成进度=累计完成数÷任务数×100%)最快、最慢的县(市、区)分别是哪一个?
(2)求截止5月4日全市的完成进度;
(3)请结合图表信息和数据分析,对Ⅰ县完成指标任务的行动过程和成果进行评价.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将正方形的边绕点逆时针旋转至 ,记旋转角为.连接,过点作垂直于直线,垂足为点,连接,
如图1,当时,的形状为 ,连接,可求出的值为 ;
当且时,
①中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;
②当以点为顶点的四边形是平行四边形时,请直接写出的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某地一种商品的需求量(万件)与商品价格(元/件)存在一次函数关系,且价格为10元/件时,需求量是50万件;当价格是20元/件时,需求量是40万件,该商品的供应量(万件)与商品的价格(元/件)的函数关系如图所示.
(1)求关于的函数关系式,并在坐标系中画出它的图象;
(2)要使商品价格相对稳定,需保持供应量与需求量的大致平衡(简称供需平衡),你认为商品的价格定在每件多少元时,供需最平衡;商品价格是每件多少元时,供大于求?
(3)当市场供应量大于需求量的时,政府就会发出预警,那么政府发出预警时,商品的最低价格是每件多少元?(精确到元)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com