精英家教网 > 初中数学 > 题目详情
如图,AB是⊙O的直径,AM和BN是它的两条切线,DE切⊙O于点E,交AM与于点D,交BN于点C,F是CD的中点,连接OF.
(1)求证:ODBE;
(2)猜想:OF与CD有何数量关系?并说明理由.
(1)证明:连接OE,
∵AM、DE是⊙O的切线,
∴DA=DE,∠OAD=∠OED=90°,
又∵OD=OD,
在△AOD和△EOD中,
DA=DE
OD=OD

∴△AOD≌△EOD,
∴∠AOD=∠EOD=
1
2
∠AOE,
∵∠ABE=
1
2
∠AOE,
∴∠AOD=∠ABE,
∴ODBE;

(2)OF=
1
2
CD.
理由:连接OC,
∵BC、CE是⊙O的切线,
∴∠OCB=∠OCF,
∵AMBN,
∴∠ADO+∠EDO+∠OCB+∠OCE=180°,
由(1)得∠ADO=∠EDO,
∴2∠EDO+2∠OCE=180°,
即∠EDO+∠OCE=90°,
在Rt△DOC中,
∵F是DC的中点,
∴OF=
1
2
CD.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知PA、PB切⊙O于A、B两点,连AB,且PA,PB的长是方程x2-2mx+3=0的两根,AB=m.试求:
(1)⊙O的半径;
(2)由PA,PB,
AB
围成图形(即阴影部分)的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,在△ABC中,BC=AC,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E.
(1)求证:点D是AB的中点;
(2)证明:DE是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

有人请泰克地毯公司为某新建机场的环形通道铺设地毯.当泰克先生拿到计划蓝图(如图)时,他有些生气:与内圆相切的一条弦的长度是唯一给出的尺寸数据.“这就难了,”泰克想,“两圆之间环形阴影的面积不知道,怎么能估计出大致需要多少地毯呢?最好去找找设计师萨普先生.”萨普先生是个优秀的几何学家,他对此倒是处之泰然:“对我来说,有这一个数据就够了,把这个数据代入公式就能求出圆环的面积.”泰克先生吃了一惊,略一思索,便现出了笑容:“谢谢你,萨普先生,无须劳驾你动用什么公式了,我可以马上得出答案.”你知道泰克先生是怎么算的吗?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,⊙O的直径AB=18,AC和BD是它的两条切线,CD与⊙O相切于E,且与AC、BD相交于点C、D,设
AC=x,BD=y,试求xy的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

直线与圆的位置关系有三种分别是______,______,______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知A、B两点的坐标分别为(2,0)、(0,2),⊙C的圆心坐标为(-1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是(  )
A.2B.1C.2-
2
2
D.2-
2

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,PA、PB分别切⊙O于点A、B,若∠P=70°,则∠C的大小为______(度).

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知PA、PB切⊙O于点A、B,OP交AB于C,则图中能用字母表示的直角共有(  )个.
A.3B.4C.5D.6

查看答案和解析>>

同步练习册答案