精英家教网 > 初中数学 > 题目详情
抛物线y=ax2与直线x=1,x=2,y=1,y=2围成的正方形有公共点,则实数a的取值范围是( )
A.≤a≤1
B.≤a≤2
C.≤a≤1
D.≤a≤2
【答案】分析:此题主要考数形结合,画出图形找出范围,问题就好解决了.
解答:解:由右图知:A(1,2),B(2,1),
再根据抛物线的性质,|a|越大开口越小,
把A点代入y=ax2得a=2,
把B点代入y=ax2得a=
则a的范围介于这两点之间,故≤a≤2.
故选D.
点评:此题考查学生的观察能力,把函数性质与正方形连接起来,要学会数形结合.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,平面直角坐标系中,抛物线y=ax2+bx+c经过A(0,4)、B(-2,0)、C(6,0).过点AADx轴交抛物线于点D,过点DDEx轴,垂足为点EM是四边形OADE的对角线的交点,点Fy轴负半轴上,且F(0,-2).

(1)求抛物线的解析式,并直接写出四边形OADE的形状;

(2)当点PQC、F两点同时出发,均以每秒1个长度单位的速度沿CBFA方向

运动,点P运动到OPQ两点同时停止运动.设运动的时间为t秒,在运动过

程中,以PQOM四点为顶点的四边形的面积为S,求出St之间的函数关

系式,并写出自变量的取值范围;

(3)在抛物线上是否存在点N,使以B、C、FN为顶点的四边形是梯形?若存在,直

接写出点N的坐标;不存在,说明理由。

 


第23题图(1)

 

查看答案和解析>>

同步练习册答案