精英家教网 > 初中数学 > 题目详情
如图,抛物线y=x2+mx+n与x轴交于A、B两点,与y轴交于C点,四边形OBHC为矩形,CH的延长线交抛物线于点D(5,2),连接BC、AD.
(1)求C点的坐标及抛物线的解析式;
(2)将△BCH绕点B按顺时针旋转90°后再沿x轴对折得到△BEF(点C与点E对应),判断点E是否落在抛物线上,并说明理由;
(3)设过点E的直线交AB边于点P,交CD边于点Q.问是否存在点P,使直线PQ分梯形ABCD的面积为1:3两部分?若存在,求出P点坐标;若不存在,请说明理由.

【答案】分析:(1)由于CD∥x轴,因此C,D两点的纵坐标相同,那么C点的坐标就是(0,2),n=2;已知抛物线过D点,可将D的坐标代入抛物线的解析式中即可求出m的值,也就确定了抛物线的解析式;
(2)由于旋转翻折只是图形的位置有变化,而大小不变,因此:△BCH≌△BEF,OC=BF,CH=EF.OC的长可以通过C点的坐标得出,求CH即OB的长,要先得出B点的坐标,可通过抛物线的解析式来求得.这样可得出E点的坐标,然后代入抛物线的解析式即可判断出E是否在抛物线上;
(3)本题可先表示出直线PQ分梯形ABCD两部分的各自的面积.首先要得出P,Q的坐标.
可先设出P点的坐标如:(a,0).由于直线PQ过E点,因此可根据P,E的坐标用待定系数法表示出直线PQ的解析式,进而可求出Q点的坐标.这样就能表示出BP,AP,CQ,DQ的长,也就能表示出梯形BPQC和梯形APQD的面积.然后分类进行讨论
①梯形BPQC的面积:梯形APQD的面积=1:3,
②梯形APQD的面积:梯形BPQC的面积=1:3,
根据上述两种不同的比例关系式,可求出各自的a的取值,也就能求出不同的P点的坐标.综上所述可求出符合条件的P点的坐标.
解答:解:(1)∵四边形OBHC为矩形,
∴CD∥AB,
又D(5,2),
∴C(0,2),OC=2.

解得
∴抛物线的解析式为:y=x2-x+2;

(2)点E落在抛物线上.理由如下:
由y=0,得x2-x+2=0.
解得x1=1,x2=4.
∴A(4,0),B(1,0).
∴OA=4,OB=1.
由矩形性质知:CH=OB=1,BH=OC=2,∠BHC=90°,
由旋转、轴对称性质知:EF=1,BF=2,∠EFB=90°,
∴点E的坐标为(3,-1).
把x=3代入y=x2-x+2,得y=•32-•3+2=-1,
∴点E在抛物线上;

(3)存在点P(a,0).记S梯形BCQP=S1,S梯形ADQP=S2,易求S梯形ABCD=8.
当PQ经过点F(3,0)时,易求S1=5,S2=3,
此时S1:S2不符合条件,故a≠3.
设直线PQ的解析式为y=kx+b(k≠0),

解得

由y=2得x=3a-6,
∴Q(3a-6,2)
∴CQ=3a-6,BP=a-1,s1=(3a-6+a-1)•2=4a-7.
下面分两种情形:
①当S1:S2=1:3时,S1=S梯形ABCD=×8=2;
∴4a-7=2,解得
②当S1:S2=3:1时,S1=S梯形ABCD=×8=6;
∴4a-7=6,解得
综上所述:所求点P的坐标为(,0)或(,0)
点评:本题着重考查了待定系数法求二次函数解析式、图形旋转翻折变换、矩形的性质等重要知识点,综合性强,考查学生分类讨论,数形结合的数学思想方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,抛物线y=x2+4x与x轴分别相交于点B、O,它的顶点为A,连接AB,AO.
(1)求点A的坐标;
(2)以点A、B、O、P为顶点构造直角梯形,请求一个满足条件的顶点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

16、如图,抛物线y=-x2+2x+m(m<0)与x轴相交于点A(x1,0)、B(x2,0),点A在点B的左侧.当x=x2-2时,y
0(填“>”“=”或“<”号).

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图,抛物线y=x2+(k2+1)x+k+1的对称轴是直线x=-1,且顶点在x轴上方.设M是直线x=-1左侧抛物线上的一动点,过点M作x轴的垂线MG,垂足为G,过点M作直线x=-1的垂线MN,垂足为N,直线x=-1与x轴的交于H点,若M点的横坐标为x,矩形MNHG的周长为l.
(1)求出k的值;
(2)写出l关于x的函数解析式;
(3)是否存在点M,使矩形MNHG的周长最小?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•扬州)如图,抛物线y=x2-2x-8交y轴于点A,交x轴正半轴于点B.
(1)求直线AB对应的函数关系式;
(2)有一宽度为1的直尺平行于y轴,在点A、B之间平行移动,直尺两长边所在直线被直线AB和抛物线截得两线段MN、PQ,设M点的横坐标为m,且0<m<3.试比较线段MN与PQ的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,抛物线y=x2-2x-3与x轴分别交于A,B两点.
(1)求A,B两点的坐标;
(2)求抛物线顶点M关于x轴对称的点M′的坐标,并判断四边形AMBM′是何特殊平行四边形.(不要求说明理由)

查看答案和解析>>

同步练习册答案