【题目】如图,在平面直角坐标系中,ABCD的边AB=2,顶点A坐标为(1,b),点D坐标为(2,b+1)
(1)点B的坐标是 ,点C的坐标是 (用b表示);
(2)若双曲线y=过ABCD的顶点B和D,求该双曲线的表达式;
(3)若ABCD与双曲线y=(x>0)总有公共点,求b的取值范围.
【答案】(1)(3,b);(4,b+1);(2)y=;(3)0≤b≤4.
【解析】
(1)由四边形ABCD为平行四边形,得到A与B纵坐标相同,C与D纵坐标相同,横坐标相差2,得出B、C坐标即可;
(2)根据B与D在反比例图象上,得到C与D横纵坐标乘积相等,求出b的值确定出B坐标,进而求出k的值,确定出双曲线解析式;
(3)抓住两个关键点,将A坐标代入双曲线解析式求出b的值;将C坐标代入双曲线解析式求出b的值,即可确定出平行四边形与双曲线总有公共点时b的范围.
解:(1)根据题意得:B(3,b),C(4,b+1).
故答案为:B(3,b),C(4,b+1);
(2)∵双曲线y=过点B(3,b)和D(2,b+1),
∴3b=2(b+1),
解得b=2,
∴B点坐标为(3,2),D点坐标(2,3),
把B点坐标(3,2)代入y=,解得k=6;
∴双曲线表达式为y=;
(3)∵ABCD与双曲线y=(x>0)总有公共点,
∴当点A(1,b)在双曲线y=,得到b=4,
当点C(4,b+1)在双曲线y=,得到b=0,
∴b的取值范围0≤b≤4.
科目:初中数学 来源: 题型:
【题目】某中学为了创建书香校园,去年购买了一批图书,其中科普书的单价比文学书的单价多4元,用1200元购买的科普书与用800元购买的文学书数量相等.
(1)求去年购买的文学书和科普书的单价各是多少元?
(2)若今年文学书的单价比去年提高了25%,科普书的单价与去年相同,这所中学今年计划再购买文学书和科普书共200本,且购买文学书和科普书的总费用不超过2135元,这所中学今年至少要购买多少本文学书?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是平行四边形,下列说法不正确的是( )
A. 当AC=BD时,四边形ABCD是矩形
B. 当AB=BC时,四边形ABCD是菱形
C. 当AC⊥BD时,四边形ABCD是菱形
D. 当∠DAB=90°时,四边形ABCD是正方形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形OABC中,A(1,0),C(0,2),双曲线y=(0<k<2)的图象分别交AB,CB于点E,F,连接OE,OF,EF,S△OEF=2S△BEF,则k值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本小题10分)如图,已知A(-4,2)、B(n,-4)是一次函数的图象与反比例函数的图象的两个交点.
(1)求此反比例函数和一次函数的解析式;
(2)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形的边长为2,点为坐标原点,边、分别在轴、轴上,点是的中点.点是线段上的一个点,如果将沿直线对折,使点的对应点恰好落在所在直线上.
(1)若点是端点,即当点在点时,点的位置关系是________,所在的直线是__________;当点在点时,点的位置关系是________,所在的直线表达式是_________;
(2)若点不是端点,用你所学的数学知识求出所在直线的表达式;
(3)在(2)的情况下,轴上是否存在点,使的周长为最小值?若存在,请求出点的坐标:若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数y=﹣2x+4,完成下列问题:
(1)在所给直角坐标系中画出此函数的图象;
(2)根据函数图象回答:
方程﹣2x+4=0的解是______________;当x_____________时,y>2;当﹣4≤y≤0时,相应x的取值范围是_______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF,
(1)证明:CF=EB.
(2)证明:AB=AF+2EB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了开展读书月活动,对学生最喜欢的图书种类进行了一次抽样调查,所有图书分成四类:艺术、文学、科普、其他.随机调查了该校m名学生(每名学生必选且只能选择一类图书),并将调查结果制成如下两幅不完整的统计图:
根据统计图提供的信息,解答下列问题:
(1)m= ,n= ,并请根据以上信息补全条形统计图;
(2)扇形统计图中,“艺术”所对应的扇形的圆心角度数是 度;
(3)根据抽样调查的结果,请你估计该校900名学生中有多少学生最喜欢科普类图书.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com