精英家教网 > 初中数学 > 题目详情

【题目】xmx+3的乘积中不含x的一次项,则m的值为(

A.3B.1C.0D.3

【答案】A

【解析】

直接利用多项式乘以多项式运算法则计算,再根据条件可得3m0,再解得出答案

解:(xm)(x+3)=x2+3xmx3mx2+3mx3m

∵乘积中不含x的一次项,

3m0

解得:m3

故选:A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,等腰△ ABC 的周长为 21,底边 BC=5,AB 的垂直平分线 DE 交 AB 于点 D,交 AC于点 E,则△BEC 的周长为( )

A.13
B.14
C.15
D.16

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了维护国家主权和海洋权力,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在处测得灯塔在北偏东方向上,继续航行1小时到达处,此时测得灯塔在北偏东方向上.

(1)求的度数;

(2)已知在灯塔的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】全面两孩政策实施后,甲,乙两个家庭有各自的规划.假定生男生女的概率相,回答下列问题

(1家庭已有一个男孩,准备生一个孩子,第二个孩子是女孩的率是

(2)乙家庭没有孩子准备生两个孩子求至少有一个孩子是女孩的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知命题:“P 是等边△ABC 内的一点,若 P 到三边的距离相等,则 PA=PB=PC.”
(1)写出它的逆命题.判断其逆命题成立吗?若成立,请给出证明.
(2)进一步证明:点 P 到等边△ABC 各边的距离之和为定值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合题探究发现
(1)问题发现
如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.
填空:①∠AEB的度数为;②线段AD,BE之间的数量关系为

(2)拓展探究
如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个多项式加上﹣2+x﹣x2得x2﹣1,则这个多项式是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】据统计:超速行驶是引发交通事故的主要原因,学完第一章后,李鹏、王军、张力三位同学尝试用自己所学的知识检测车速,他们决定在峨城大道金源山水城路段进行测试汽车速度的实验,并把观测点设在到公路l的距离为30米的点P处,选择了一辆匀速行驶的大众轿车作为观测对象,测得此车从A处行驶到B处所用的时间为3秒,并测得∠PAO=45°,同时发现将△BPO沿过A点的直线折叠,点B能与点P重合,试判断此车是否超过了每小时60千米的限制速度?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.

(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?

(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?

查看答案和解析>>

同步练习册答案