【题目】已知直线y=kx+b经过点B(1,4),且与直线y=﹣x﹣11平行.
(1)求直线AB的解析式并求出点C的坐标;
(2)根据图象,写出关于x的不等式0<2x﹣4<kx+b的解集;
(3)现有一点P在直线AB上,过点P作PQ∥y轴交直线y=2x﹣4于点Q,若线段PQ的长为3,求P点坐标.
【答案】(1)(3,2);(2)2<x<3;(3)(2,3)或(4,1).
【解析】
(1) 直线y=kx+b与直线y=﹣x﹣11平行,可知k=-1,将B(1,4)代入y=-x+b,可得b=5,即可得到直线AB的解析式,联立方程组可两个函数的交点.
(2)解不等式组即可.
(3)分点P在Q上方和下方两种情况进行讨论.
(1)∵直线y=kx+b与直线y=﹣x﹣11平行,
∴k=﹣1,
∵直线y=﹣x+b经过点B(1,4),
∴﹣1+b=4,
解得b=5,
∴直线AB的解析式为:y=﹣x+5;
∵直线y=2x﹣4与直线AB相交于点C,
∴.
解得,
∴点C(3,2);
(2)由题意得,
2<x<3,
根据图象可得关于x的不等式0<2x﹣4<kx+b的解集是2<x<3;
(3)∵点P在直线AB上,PQ∥y轴,
∴设点P的坐标(x,﹣x+5)则点Q的坐标(x,2x﹣4)
∵线段PQ的长为3
∴①点P在点Q的上方时,﹣x+5-2x+4=3
x=2.
∴当x=2时,﹣x+5=-2+5=3
点P的坐标(2,3)
②点P在点Q的下方时,2x﹣4+x﹣5=3
x=4
∴当x=4时,﹣x+5=-4+5=1
点P的坐标(4,1).
故答案为:(1)(3,2);(2)2<x<3;(3)(2,3)或(4,1).
科目:初中数学 来源: 题型:
【题目】如图,AD,BC是⊙O的两条互相垂直的直径,点P从点O出发,沿O→C→D→O的路线匀速运动.设∠APB=y(单位:度),那么y与点P运动的时间x(单位:秒)的关系图是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠ACB=90°,D,E是边AB上两点,且CE所在直线垂直平分线段AD,CD平分∠BCE,AC=5cm,则BD的长为( )
A. 5cm B. 6cm C. 7cm D. 8cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADB+∠EDC=120°.
(1)求证:△ABD∽△DCE;
(2)若BD=3,CE=2,求△ABC的边长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】完成推理填空:如图在△ABC中,已知∠1+∠2=180°,∠3=∠B,试说明∠AED=∠C.
解:∵∠1+∠2=180°( ), +∠EFD=180°(邻补角定义),
∴ (同角的补角相等)
∴AB∥ (内错角相等,两直线平行)
∴∠ADE=∠3( )
∵∠3=∠B(已知)∴ (等量代换)
∴ ∥BC(同位角相等,两直线平行)
∴∠AED=∠C( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△OAB中,OA=OB=10,∠AOB=70°,以点O为圆心,6为半径的优弧 分别交OA、OB于点M,N.
(1)点P在右半弧上(∠BOP是锐角),将OP绕点O逆时针旋转70°得OP′.求证:AP=BP′;
(2)点T在左半弧上,若AT与弧相切,求点T到OA的距离;
(3)设点Q在优弧 上,当△AOQ的面积最大时,直接写出∠BOQ的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某宾馆有客房200间供游客居住,当每间客房的定价为每天180元时,客房恰好全部住满;如果每间客房每天的定价每增加10元,就会减少4间客房出租.设每间客房每天的定价增加x元,宾馆出租的客房为y间.求:
(1)y关于x的函数关系式;
(2)如果某天宾馆客房收入38400元,那么这天每间客房的价格是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠A=∠B=50°,P 为 AB 中点,点 M 为射线 AC 上(不与点 A 重合)的任意一点,连接 MP, 并使MP 的延长线交射线BD 于点N,设∠BPN=α.
(1)求证:△APM≌△BPN;
(2)当 MN=2BN 时,求α的度数;
(3)若△BPN 为锐角三角形时,直接写出α的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分为三个三角形,则S△ABO︰S△BCO︰S△CAO等于( )
A. 1︰1︰1
B. 1︰2︰3
C. 2︰3︰4
D. 3︰4︰5
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com