精英家教网 > 初中数学 > 题目详情
6.计算:
(1)(-1)2+($\frac{1}{2}$-$\frac{7}{12}$+$\frac{5}{6}$)×(-36)
(2)-22×(-1$\frac{1}{2}$)-32÷(-2)2×(-1$\frac{1}{4}$)

分析 根据有理数的混合运算法则计算即可.

解答 解:(1)(-1)2+($\frac{1}{2}$-$\frac{7}{12}$+$\frac{5}{6}$)×(-36)
=1-$\frac{1}{2}$×36+$\frac{7}{12}$×36-$\frac{5}{6}$×36
=1-18+21-30
=-26;
(2)-22×(-1$\frac{1}{2}$)-32÷(-2)2×(-1$\frac{1}{4}$)
=4×$\frac{3}{2}$+32÷4×$\frac{5}{4}$
=6+10
=16.

点评 本题考查的是有理数的混合运算,掌握有理数的混合运算法则、乘法的分配律是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

16.一元二次方程x2-2x+5=0的一次项系数是-2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.若5和2是关于x的方程x2+mx+n=0的两个根,则mn=-70.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,l1∥l2∥l3,AB=3,BC=5,DF=12,则EF=7.5.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.若将直线y=-2x+1向上平移3个单位,则所得直线的表达式为y=-2x+4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.已知正方形ABCD的边长为2,点P为正方形内一动点,若点M在AB上,且满足△PBC∽△PAM,延长BP交AD于点N,连接CM.
(1)如图(1),若点M在线段AB上,则AP与BN的位置关系是AP⊥BN,AM与AN的数量关系是AM=AN;
(2)①如图(2),在点P运动过程中,满足△PBC∽△PAM的点M在AB的延长线上时,(1)中的关系是否仍然成立(给出证明)?
②在运动过程中,PC的最小值为$\sqrt{5}$-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,△ABC是直角三角形,∠BAC=90°,AB=2$\sqrt{5}$,AC=4$\sqrt{5}$,如图所示建立平面直角坐标系.
(1)求经过点A、B、C的抛物线的解析式;
(2)点P为x轴上方的抛物线上的一个动点,连接PA、PC,设所得△PAC的面积为S,求S等于多少时,相应的点P有且只有2个?
(3)在直线AC上是否存在一点Q,使△QBC为等腰三角形?若存在,直接写出所有符合条件的点Q的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.下列说法正确的是(  )
A.0是最小的正数B.0是最小的非负数
C.有理数中存在最大的数D.整数分为正整数和负整数

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.下列命题中,正确的命题的个数是(  )  
①平分一条弦的直径一定垂直于弦;
②相等的两条弧所对的圆心角相等;
③两个相似梯形的面积之比是4:9,则它们的周长之比是2:3;
④在⊙O中,弦AB把圆周分成1:5两部分,则弦AB所对的圆周角是30°;
⑤△ABC中,AD为BC边上的高,若AD=$\sqrt{3}$,BD=1,∠C=30°,则BC=4.
A.2个B.3个C.4个D.5个

查看答案和解析>>

同步练习册答案