精英家教网 > 初中数学 > 题目详情

如图,抛物线过x轴上两点A(9,0),C(-3,0),且与y轴交于点B(0,-12).

(1)求抛物线的解析式;
(2)若动点P从点A出发,以每秒2个单位沿射线AC方向运动;同时,点Q从点B出发,以每秒1个单位沿射线BA方向运动,当点P到达点C处时,两点同时停止运动.问当t为何值时,△APQ∽△AOB?
(3)若M为线段AB上一个动点,过点M作MN平行于y轴交抛物线于点N.
①是否存在这样的点M,使得四边形OMNB恰为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.
②当点M运动到何处时,四边形CBNA的面积最大?求出此时点M的坐标及四边形CBNA面积的最大值.

(1);(2);(3)①不存在;②当点M运动到(,-6)时,四边形CBNA的面积最大,四边形CBNA面积的最大值为

解析试题分析:(1)应用待定系数法,设交点式求解;
(2)根据相似三角形的性质求解即可;
(3)①由MN=OB=12列式,根据一元二次方程根的判别式小于0得出不存在这样的点M,使得四边形OMNB恰为平行四边形结论;②求出面积关于x的二次函数关系式,应用二次函数最值原理求解即可.
试题解析:(1)因抛物线过x轴上两点A(9,0),C(-3,0),故设抛物线解析式为:.
又∵B(0,-12) ∴ ,解得a=
∴抛物线的解析式为.
(2)∵OA=9,OB=12,∴AB=15.
∵点P的速度是每秒2个单位,点Q的速度是每秒1个单位,∴AP=2t,AQ=15-t.
又∵AC=12,∴0≤t≤6.
∵△APQ∽△AOB,∴,即,解得.
∴当时,△APQ∽△AOB.
(3)易求直线AB的函数关系式为
设点M的横坐标为x,则M(x,),N(x,).
①若四边形OMNB为平行四边形,则MN=OB=12
,即x2-9x+27=0.
∵△<0,∴此方程无实数根.
∴不存在这样的点M,使得四边形OMNB恰为平行四边形.
②∵S四边形CBNA=SACB+SABN="72+" SABN
∵SAOB=54,SOBN=6x,SOAN·9·=-2x2+12x+54
∴SABN=SOBN+SOAN-SAOB=6x+(-2x2+12x+54)-54=-2x2+18x=.
∴当x=时,SABN最大值=,此时M(,-6)
S四边形CBNA最大=
考点:1.双动点问题;2.待定系数法的应用;3.曲线上点的坐标与方程的关系;4. 相似三角形的性质;5. 平行四边形的判定;6. 一元二次方程根的判别式;7.二次函数最值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

如图,已知在平面直角坐标系中,四边形ABCO是梯形,且BC∥AO,其中A(6,0),B(3,),∠AOC=60°,动点P从点O以每秒2个单位的速度向点A运动,动点Q也同时从点B沿B→C→O的线路以每秒1个单位的速度向点O运动,当点P到达A点时,点Q也随之停止,设点P,Q运动的时间为t(秒).

(1)求点C的坐标及梯形ABCO的面积;
(2)当点Q在CO边上运动时,求△OPQ的面积S与运动时间t的函数关系式,并写出自变量t的取值范围;
(3)以O,P,Q为顶点的三角形能构成直角三角形吗?若能,请求出t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线y=x2+mx+n交x轴于A、B两点,交y轴于点C,点P是它的顶点,点A的坐标是(1,0),点B的坐标是(﹣3,0).

(1)求m、n的值;
(2)求直线PC的解析式.
[温馨提示:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(﹣)].

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某商店将进价为每件80元的某种商品按每件100元出售,每天可售出100件.经过市场调查,发现这种商品每件每降低1元,其销售量就可增加10件.
(1)设每件商品降低售价元,则降价后每件利润        元,每天可售出        件(用含的代数式表示);
(2)如果商店为了每天获得利润2160元,那么每件商品应降价多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知二次函数的图象经过点A(2,-3),B(-1,0).
(1)求二次函数的解析式;
(2)观察函数图象,要使该二次函数的图象与轴只有一个交点,应把图象沿轴向上平移几个单位?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

抛物线经过点A(4,0),B(2,2),连结OB,AB.

(1)求的值;
(2)求证:△OAB是等腰直角三角形;
(3)将△OAB绕点O按顺时针方向旋转l35°得到△OA′B′,写出A′B′的中点P的出标.试判断点P是否在此抛物线上,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,已知抛物线轴于A(2,0),B(6,0)两点,交轴于点C(0,).

(1)求此抛物线的解析式;
(2)若此抛物线的对称轴与直线交于点D,作⊙D与x轴相切,⊙D交轴于点E、F两点,求劣弧EF所对圆心角的度数;
(3)P为此抛物线在第二象限图像上的一点,PG垂直于轴,垂足为点G,试确定P点的位置,使得△PGA的面积被直线AC分为1︰2两部分.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

抛物线过点(2,-2)和(-1,10),与x轴交于A、B两点,与y轴交于C点.
(1)求抛物线的解析式.
(2)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,直线与x轴相交于点A,与直线相交于点P.动点E从原点O出发,以每秒1个单位长度的速度沿着OPA的路线向点A匀速运动(E不与点O,A重合),过点E分别作EF⊥x轴于F,EB⊥y轴于B.设运动t秒时,矩形EBOF与△OPA重叠部分面积为S.

(1)求点P的坐标;
(2)请判断△OPA的形状并说明理由;
(3)请探究S与t之间的函数关系式,并指出t的取值范围.

查看答案和解析>>

同步练习册答案