【题目】在△ABC中,∠ACB=90°,经过点C的⊙O与斜边AB相切于点P.
(1)如图①,当点O在AC上时,试说明2∠ACP=∠B;
(2)如图②,AC=8,BC=6,当点O在△ABC外部时,求CP长的取值范围.
【答案】(1)2∠ACP=∠B;(2)当点O在△ABC外时,<CP≤8.
【解析】分析:(1)根据BC与AC垂直得到BC与圆相切,再由AB与相切于点P,利用切线长定理得到,利用等边对等角得到一对角相等,再由等量代换即可得证;
(2)在中,利用勾股定理求出AB的长,根据AC与BC垂直,得到BC与相切,连接连接OP、AO,再由AB与相切,得到OP垂直于AB,设OC=x,则OP=x,OB=BCOC=6x,求出PA的长,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出BO的长,根据AC=AP,OC=OP,得到AO垂直平分CP,根据面积法求出CP的长,由题意可知,当点P与点A重合时,CP最长,即可确定出CP的范围.
详解:(1)当点O在AC上时,OC为的半径,
∵BC⊥OC,且点C在上,
∴BC与相切,
∵与AB边相切于点P,
∴BC=BP,
∴
∵
∴
即2∠ACP=∠B;
(2)在△ABC中,
如图,当点O在CB上时,OC为的半径,
∵AC⊥OC,且点C在上,
∴AC与相切,
连接OP、AO,
∵与AB边相切于点P,
∴OP⊥AB,
设OC=x,则OP=x,OB=BCOC=6x,
∵AC=AP,
∴BP=ABAP=108=2,
在△OPA中,
根据勾股定理得:,即
解得:
在△ACO中,
∴
∵AC=AP,OC=OP,
∴AO垂直平分CP,
∴根据面积法得: 则符合条件的CP长大于
由题意可知,当点P与点A重合时,CP最长,
综上,当点O在△ABC外时,
科目:初中数学 来源: 题型:
【题目】已知A、B两地相距50米,小乌龟从A地出发前往B地,第一次它前进1米,第二次它后退2米,第三次再前进3米,第四次又向后退4米…,按此规律行进,如果A地在数轴上表示的数为﹣16.
(1)求出B地在数轴上表示的数;
(2)若B地在原点的右侧,经过第七次行进后小乌龟到达点P,第八次行进后到达点Q,点P、点Q到A地的距离相等吗?说明理由?
(3)若B地在原点的右侧,那么经过100次行进后,小乌龟到达的点与点B之间的距离是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是平行四边形,点E是边CD上的一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC.其中正确的有_____.(填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,关于x的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.
(1)求抛物线的解析式;
(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;
(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC=3S△EBC?若存在求出点F的坐标,若不存在请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将△ABC绕顶点C旋转得到△A′B′C,且点B刚好落在A′B′上.若∠A=25°,∠BCA′=45°,则∠A′BA等于( )
A. 40°B. 35°C. 30°D. 45°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB与CD相交于点O,OF,OD分别是∠AOE,∠BOE的平分线.
(1)写出∠DOE的补角;
(2)若∠BOE=62°,求∠AOD和∠EOF的度数;
(3)试问射线OD与OF之间有什么特殊的位置关系?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一只箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同。
(1)从箱子中任意摸出一个球是白球的概率是多少?
(2)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出球的都是白球的概率,并画出树状图。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:正方形ABCD,等腰直角三角板的直角顶点落在正方形的顶点D处,使三角板绕点D旋转.
(1)当三角板旋转到图1的位置时,猜想CE与AF的数量关系,并加以证明;
(2)在(1)的条件下,若DE:AE:CE= 1: :3,求∠AED的度数;
(3)若BC= 4,点M是边AB的中点,连结DM,DM与AC交于点O,当三角板的一边DF与边DM重合时(如图2),若OF=,求CN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中MN分别在AB、CD上且AM=CN,MN与AC交于点O,连接BO若∠DAC=62°,则∠OBC的度数为( )
A. 28°B. 52°C. 62°D. 72°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com