精英家教网 > 初中数学 > 题目详情
如图,已知AB是⊙O的直径,AC为弦,且平分∠BAD,AD⊥CD,垂足为D.
(1)求证:CD是⊙O切线;
(2)若⊙O的直径为4,AD=3,求∠BAC的度数.
(1)证明:连接OC,
∵OA=OC,
∴∠OCA=∠OAC.
∵AC平分∠BAD,
∴∠BAC=∠CAD.
∴∠OCA=∠CAD.
∴OCAD.
又∵AD⊥CD,
∴OC⊥CD.
∴CD是⊙O的切线.(4分)

(2)连接BC,
∵AB是直径,
∴∠BCA=90°.
∴∠BCA=∠ADC=90°.
∵∠BAC=∠CAD,
∴△BAC△CAD.
AB
AC
=
AC
AD
4
AC
=
AC
3

∴AC=2
3

在Rt△ABC中,cos∠BAC=
AC
AB
=
3
2

∴∠BAC=30°.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图AB是⊙O的直径,从⊙O外一点C引⊙O切线CD,D是切点,再从C点引割线交⊙O于E、F交BD于G,EF⊥AB于H,已知AB=4,OH=HB,CE=
1
2
EF,则CG=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,PB,PC分别切⊙O于B、C两点,点A在⊙O上,若∠A=65°,则∠P=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:△ABC是边长为4的等边三角形,点O在边AB上,⊙O过点B且分别与边AB,BC相交于点D,E,EF⊥AC,垂足为F.
(1)求证:直线EF是⊙O的切线;
(2)当直线DF与⊙O相切时,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,Rt△ABC中,∠ACB=90°,点O在AC上,以O为圆心、OC为半径的圆与AB相切于点D,交AC于点E.
(1)求证:DEOB;
(2)若⊙O的半径为2,BC=4,求AD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,PA为⊙O的切线,A为切点,PBC为割线,∠APC的平分线PF交AC于点F,交AB于点E.
(1)求证:AE=AF;
(2)若PB:PA=1:2,M是
BC
上的点,AM交BC于D,且PD=DC,试确定M点在BC上的位置,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图i,半圆O为△ABC的外接半圆,AC为直径,D为劣弧
BC
上的一动点,P在CB的延长线上,且有∠BAP=∠BDA.
(1)求证:AP是半圆O的切线;
(2)当其它条件不变时,问添加一个什么条件后,有BD2=BE•BC成立?说明理由;
(3)如图ii,在满足(2)问的前提下,若OD⊥BC与H,BE=2,EC=4,连接PD,请探究四边形ABDO是什么特殊的四边形,并求tan∠DPC的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,PA、PB是⊙O的切线,切点分别为A、B,点C在⊙O上,如果∠P=50°,那么∠ACB等于(  )
A.40°B.50°C.65°D.130°

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图矩形ABCD中,过A,B两点的⊙O切CD于E,交BC于F,AH⊥BE于H,连接EF.
(1)求证:∠CEF=∠BAH;
(2)若BC=2CE=6,求BF的长.

查看答案和解析>>

同步练习册答案