精英家教网 > 初中数学 > 题目详情

如图,AB=AC,DBC上任意一点,作DE∥AC交AB于点E,DF∥AB交AC于F,四边形AEDF为平行四边形.
(1)当点D在BC上运动时,∠EDF的大小是否发生变化?为什么?
(2)当AB=10cm时,求?AEDF的周长;
(3)通过计算(2),你能否的出类似于(1)的结论?写出你的猜想.

解:(1)不变,因为四边形AEDF为平行四边形,平行四边形的对角相等;

(2)在?AEDF中,DF=AE,AF=DE,ED∥AC
∴∠EDB=∠C,
∵在△ABC中,AB=AC,
∴∠B=∠C,
∴∠B=∠EDB,
∴BE=ED=AF,
∴C?AEDF=2(AE+DE)=2(AE+BE)=2AB=20,
即?AEDF的周长等于等腰三角形的两腰之和,周长为20cm;

(3)?AEDF的周长保持不变,周长等于常数20cm.
分析:(1)由题可知,四边形AEDF为平行四边形,∠EDF=∠A,所以在D点运动过程中,只要∠A度数不发生变化,它的度数就不变;
(2)平行四边形AEDF中,FD=AE,AF=ED,因为ED和AC平行,所以∠EDB和∠C相等,又在等腰三角形ABC中,∠B=∠C,所以BE=DE,同理,AF=BE,即平行四边形AEDF周长等于AB的2倍20;
(3)在D点运动过程中,虽然平行四边形AEDF形状会发生变化,但是线段之间的和差关系不变,即平行四边形AEDF周长永远等于三角形ABC腰长的2倍.
点评:本题主要考查了平行四边形中对边相等的性质及应用,以及等腰三角形的等角对等边的性质,难易程度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、如图,AB=AC=AD.
(1)如果AD∥BC,那么∠C和∠D有怎样的数量关系?证明你的结论;
(2)如果∠C=2∠D,那么你能得到什么结论?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•虹口区一模)已知:如图,AB=AC,∠DAE=∠B.
求证:△ABE∽△DCA.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•来宾)如图,AB=AC,D,E分别是AB,AC上的点,下列条件中不能证明△ABE≌△ACD的是
(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB=AC,∠C=67°,AB的垂直平分线EF交AC于点D,求∠DBC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB=AC=10,∠A=40°,AB的垂直平分线MN交AC于点D,求:
(1)∠ABD的度数;
(2)若△BCD的周长是m,求BC的长.

查看答案和解析>>

同步练习册答案