精英家教网 > 初中数学 > 题目详情
17.如图,已知PC平分∠MPN,点O是PC上任意一点,PM与⊙O相切于点E,交PC于A、B两点.
(1)求证:PN与⊙O相切;
(2)如果∠MPC=30°,PE=2$\sqrt{3}$,求劣弧$\widehat{BE}$的长.

分析 (1)连接OE,过O作OF⊥PN,根据角平分线的性质定理可得OF=OE,即可确定出PN与圆O相切;
(2)在直角三角形POE中,利用30度所对的直角边等于斜边的一半求出OE的长,∠EOB度数,利用弧长公式即可求出劣弧$\widehat{BE}$的长.

解答 (1)证明:连接OE,过O作OF⊥PN,如图所示,
∵PM与圆O相切,
∴OE⊥PM,
∴∠OEP=∠OFP=90°,
∵PC平分∠MPN,
∴OF=OE,
则PN与圆O相切;
(2)在Rt△EPO中,∠MPC=30°,PE=2$\sqrt{3}$,
∴∠EOP=60°,OE=2,
∴∠EOB=120°,
则$\widehat{BE}$的长l=$\frac{120π×2}{180}$=$\frac{4π}{3}$.

点评 此题考查了切线的判定与性质,弧长公式,熟练掌握切线的判定与性质是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.已知:如图,AD=BD,CD=ED,∠1=∠2,试说明∠3=∠1的理由.
解:因为∠1=∠2(已知),
所以∠1+∠BDE=∠2+∠BDE(等式性质),
即∠ADE=∠BDC.
在△ADE和△BDC中,
$\left\{\begin{array}{l}{AD=BD(已知)}\\{∠()=∠()}\\{ED=CD(已知)}\end{array}\right.$所以△ADE≌△BDC(SAS).
所以∠AED=∠C(全等三角形对应角相等).
又因为∠BED=∠2+∠C(三角形的一个外角等于与它不相邻的两个内角的和),
即∠3+∠AED=∠2+∠C,
所以∠3=∠2(等式的性质).
因为∠1=∠2(已知),
所以∠3=∠1(等量代换).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如果关于x的不等式组$\left\{\begin{array}{l}{5x-α≤0}\\{6x-b>0}\end{array}\right.$的整数解仅为-1,0,1,那么适合这个不等式组的有序实数对(a,b)共有30对.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.
(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;
(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?
(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1-∠2=24°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现有等式Am=(i,j)表示正奇数m是第i组第j个数(从左往右数),如A7=(2,3),则A2015=(  )
A.(31,50)B.(32,47)C.(33,46)D.(34,42)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,反比例函数y=$\frac{k}{x}$的图象与一次函数y=$\frac{1}{4}$x的图象交于点A、B,点B的横坐标是4.点P是第一象限内反比例函数图象上的动点,且在直线AB的上方.
(1)若点P的坐标是(1,4),直接写出k的值和△PAB的面积;
(2)设直线PA、PB与x轴分别交于点M、N,求证:△PMN是等腰三角形;
(3)设点Q是反比例函数图象上位于P、B之间的动点(与点P、B不重合),连接AQ、BQ,比较∠PAQ与∠PBQ的大小,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.4月26日,2015黄河口(东营)国际马拉松比赛拉开帷幕,中央电视台体育频道用直升机航拍技术全程直播.如图,在直升机的镜头下,观测马拉松景观大道A处的俯角为30°,B处的俯角为45°.如果此时直升机镜头C处的高度CD为200米,点A、D、B在同一直线上,则AB两点的距离是200$\sqrt{3}$+200米.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.甲、乙、丙、丁四位同学围成一圈依次循环报数,规定:①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5,乙报6…,后一位同学报出的数比前一位同学报出的数大1,按此规律,当报到的数是50时,报数结束;②若报出的数为3的倍数,则该报数的同学需拍手一次,在此过程中,甲同学需要拍手的次数为4.

查看答案和解析>>

同步练习册答案