精英家教网 > 初中数学 > 题目详情
已知:如图,正方形ABCD的边长为a,BM,DN分别平分正方形的两个外角,且满足 ∠MAN=45°,连结MC,NC,MN.

(1)填空:与△ABM相似的三角形是△       ,BM·DN=        ;(用含a的代数式表示)
(2)求∠MCN的度数;
(3)猜想线段BM,DN和MN之间的数量关系并证明你的结论.
(1)NDA,a2;(2)135°;(3)BM2+DN2=MN2,证明见解析.

试题分析:(1)如图(3)由条件可以得出∠BMA=∠3,∠ABM=∠ADN=135°,就可以得出△ABM∽△NDA,利用相似三角形的性质就可以的得出BM•DN=a2;(2)由△ABM∽△NDA,可以得出BM:DA=AB:ND,再由正方形的性质通过等量代换就可以得出△BCM∽△DNC,利用角的关系和圆周角的度数就可以求出结论;(3)将△AND绕点A顺时针旋转90°得到△ABF,连接MF,证明△ABF≌△ADN.利用边角的关系得出△BMF是直角三角形,由勾股定理就可以得出结论.
试题解析:(1)∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°.
∵BM,DN分别平分正方形的两个外角,∴∠CBM=∠CDN="45°." ∴∠ABM=∠ADN=135°.
∵∠MAN=45°,∴∠BMA=∠NAD. ∴△ABM∽△NDA. ∴. ∴BM•DN=a2
(2)由(1)△ABM∽△NDA可得BM:DA=AB:ND.
∵四边形ABCD是正方形,∴AB=DC,DA=BC,∠ABC=∠BCD=∠ADC=∠BAD=90°.
∴BM:BC=DC:ND.
∵BM,DN分别平分正方形ABCD的两个外角,∴∠CBM=∠NDC=45°.
∴△BCM∽△DNC.∴∠BCM=∠DNC.
∴∠MCN=360°-∠BCD-∠BCM-∠DCN=270°-(∠DNC+∠DCN)=270°-(180°-∠CDN)=135°.
(3)线段BM,DN和MN之间的等量关系是BM2+DN2=MN2.证明如下:
如图,将△AND绕点A顺时针旋转90°得到△ABF,连接MF.则△ABF≌△ADN.
∴∠1=∠3,AF=AN,BF=DN,∠AFB=∠AND.∴∠MAF=∠1+∠2=∠2+∠3=∠BAD-∠MAN=45°.
∴∠MAF=∠MAN.
又∵AM=AM,∴△AMF≌△AMN.∴MF=MN.
可得∠MBF=(∠AFB+∠1)+45°=(∠AND+∠3)+45°=90°.
∴在Rt△BMF中,BM2+BF2=FM2
∴BM2+DN2=MN2
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:在梯形ABCD中,AD∥BC,∠ABC=90°,BC=2AD,E是BC的中点,连接AE、AC.

求证:(1)点F是DC上一点,连接EF,交AC于点O(如图1),△AOE∽△COF;
(2)若点F是DC的中点,连接BD,交AE与点G(如图2),求证:四边形EFDG是菱形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示,将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示,观察图2可知:与BC相等的线段是______,∠CAC′=______°。

问题探究:如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q,试探究EP与FQ之间的数量关系,并证明你的结论.,

拓展延伸:如图4,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H,若AB=kAE,AC=kAF,试探究HE与HF之间的数量关系,并说明理由。

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,AB是⊙O的直径, ,AB=5,BD=4,则sin∠ECB=        

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图:已知一次函数的图像分别交轴、轴于两点,且点在一次函数的图像上,轴于点

(1)求的值及两点的坐标;
(2)如果点在线段上,且,求点的坐标;
(3)如果点轴上,那么当△与△相似时,求点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

是三个互不相同的正数,如果,那么(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知BO是△ABC的外接圆的半径,CD⊥AB于D.若AD=3,BD=8,CD=6,则BO的长为 (   )

A.6               B.          C.          D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,矩形ABCD中,∠ACB=30°,将一块直角三角板的直角顶点P放在两对角线AC,BD的交点处,以点P为旋转中心转动三角板,并保证三角板的两直角边分别于边AB,BC所在的直线相交,交点分别为E,F.

(1)当PE⊥AB,PF⊥BC时,如图1,则的值为     
(2)现将三角板绕点P逆时针旋转α(0°<α<60°)角,如图2,求的值;
(3)在(2)的基础上继续旋转,当60°<α<90°,且使AP:PC=1:2时,如图3,的值是否变化?证明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知,则的值为__________.

查看答案和解析>>

同步练习册答案