精英家教网 > 初中数学 > 题目详情

如图,已知直线y=kx+b(k>0)与抛物线y=x2交于A、B两点(A、B两点分别位于第二和第一象限),且A、B两点的纵坐标分别是1和9,则不等式x2-kx-b>0的解集为


  1. A.
    -1<x<3
  2. B.
    x<-1或x>3
  3. C.
    1<x<9
  4. D.
    x<1或x>9
B
分析:先把不等式整理成x2>kx+b,然后根据抛物线解析式求出点A、B的纵坐标求出横坐标,再找出抛物线图象在直线图象上方的部分的x的取值范围即可得解.
解答:由x2-kx-b>0得x2>kx+b,
∵A、B两点的纵坐标分别是1和9,
∴点A的横坐标为-1,点B的横坐标为3,
当x<-1或x>3时,抛物线图象在直线图象上方,
故不等式x2-kx-b>0的解集为x<-1或x>3.
故选B.
点评:本题考查了二次函数与不等式组,根据图象的上下方关系确定不等式的解集与x的取值范围是解题的关键,数形结合是数学中的重要思想之一.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

16、如图,已知直线AB和CD相交于点O,∠COE是直角,OF平分∠AOE.
(1)写出∠AOC与∠BOD的大小关系:
相等
,判断的依据是
等角的补角相等

(2)若∠COF=35°,求∠BOD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

5、如图,已知直线l1∥l2,AB⊥CD,∠1=30°,则∠2的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知直线l1y=
2
3
x+
8
3
与直线 l2:y=-2x+16相交于点C,直线l1、l2分别交x轴于A、B两点,矩形DEFG的顶点D、E分别在l1、l2上,顶点F、G都在x轴上,且点G与B点重合,那么S矩形DEFG:S△ABC=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•怀化)如图,已知直线a∥b,∠1=35°,则∠2=
35°
35°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直线m∥n,则下列结论成立的是(  )

查看答案和解析>>

同步练习册答案