精英家教网 > 初中数学 > 题目详情
(2010•邯郸一模)在平面直角坐标中,Rt△OAB的两顶点A,B分别在y轴,x轴的正半轴上,点O是原点.其中点A(0,3),B(4,0),OC是Rt△OAB的高,点P以每秒1个单位长的速度在线段OB上由点O向点B运动(与端点不重合),过点P作PD⊥AP交AB于点D,设运动时间为t秒.
(1)若△AOE的面积为,求点E的坐标;
(2)求证:△AOE∽△PBD;
(3)△PBD能否是等腰三角形?若能,求出此时t的值;若不能,请说明理由;
(4)当t=3时,直接写出此时的值.

【答案】分析:(1)过点E作EF⊥OA于F,则EF是△OAE的高,易知OA的长,根据△OAE的面积即可求得EF的值,易证得△OEF∽△BAO,根据相似三角形所得比例线段即可求得OE的长,也就能得到E点的坐标.
(2)由于AP⊥PD,那么∠DPB和∠EAO同为∠APO的余角,则∠EAO=∠DPB,易证得∠AOE=∠PBD,由此可证得所求的三角形相似.
(3)由于△APD中,∠APD=90°,故∠ADP是锐角,∠BDP是钝角,若△BPD是等腰三角形,那么∠BDP必为顶角,即DP=BD;由于△AOE∽△PBD,那么△AOE也是等腰三角形,即OE=AE,根据等腰三角形三线合一的性质知:AF=FO=,仿照(1)的方法,可通过△OEF∽△BAO,求得EF的长,而△AEF∽△APO,根据相似三角形所得比例线段即可求得OP的长即t的值.
(4)当t=3时,OP=OA=3,则AP=3;由(2)证得△AOE∽△PBD,那么AE:PD=OA:PB,由于OA=3,PB=OB-OP=1,因此AE=3PD,可设PD=x,则AE=3x,易得△AEC∽△ADP,则有:,根据射影定理可在Rt△ABO中求出AC的长,利用勾股定理可求得EC的表达式,将它们代入上式比例式中,即可求得x的值,进而可得到EC、AE的长,有了AE、AP的长,即可得到AE:EP的值.
解答:(1)解:过点E作EF⊥OA于点F,
∵△AOE的面积为,OA=3,
∴EF=1;
∵∠EOF=∠ABO=90°-∠BOC,
∠EFO=∠AOB=90°,
∴△OEF∽△BAO,
,即,所以OF=
∴点E的坐标为(1,).

(2)证明:∵Rt△OAB中,OC为斜边AB边上的高,
∴∠EOA+∠OAC=90°,∠DBP+∠OAC=90°,
∴∠EOA=∠DBP,
∴∠EOA=∠DBP=90°-∠BOC,
∠AEO=∠PDB=90°+∠PAB,
∴△AOE∽△PBD.

(3)△PBD可以是等腰三角形,
∵∠PDB=90°+∠PAB>90°,
∴如果△PBD是等腰三角形,∠PDB只能顶角,即DP=DB,
当△PDB是等腰三角形,∵△AOE∽△PBD,
∴△AOE是等腰三角形,且EA=EO;
过点E作EF⊥AO于点F,则AF=OF=
∵△OEF∽△BAO,
,即,所以EF=
∵△AFE∽△AOP,
,即,所以t=
∴当△PBD是等腰三角形时,t=

(4)当t=3时,
点评:此题主要考查的是相似三角形的性质以及等腰三角形的判定;在解答过程中,反复多次用到了相似三角形的性质,能够将所求线段和已知线段用相似三角形串联起来是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源:2010年河北省邯郸市中考数学一模试卷(解析版) 题型:解答题

(2010•邯郸一模)音乐喷泉的某一个喷水口,喷出的一束水流形状是抛物线,在这束水流所在平面建立平面直角坐标系,以水面与此面的相交线为x轴,以喷水管所在的铅垂线为y轴,喷出的水流抛物线的解析式为:y=-x2+bx+2.但控制进水速度,可改变喷出的水流达到的最大高度,及落在水面的落点距喷水管的水平距离.
(1)喷出的水流抛物线与抛物线y=ax2的形状相同,则a=______;
(2)落在水面的落点距喷水管的水平距离为2个单位长时,求水流抛物线的解析式;
(3)求出(2)中的抛物线的顶点坐标和对称轴;
(4)对于水流抛物线y=-x2+bx+2.当b=b1时,落在水面的落点坐标为M(m,0),当b=b2时,落在水面的落点坐标为N(n,0),点M与点N都在x轴的正半轴,且点M在点N的右边,试比较b1与b2的大小.

查看答案和解析>>

科目:初中数学 来源:2010年中考数学全真模拟试卷(解析版) 题型:选择题

(2010•邯郸一模)如图,抛物线y=ax2+bx+c,OA=OC,下列关系中正确的是( )

A.ac+1=b
B.ab+1=c
C.bc+1=a
D.+1=c

查看答案和解析>>

科目:初中数学 来源:2010年河北省邯郸市中考数学一模试卷(解析版) 题型:解答题

(2010•邯郸一模)某中学开展阳光体育活动,举办了跳绳、踢毽子、立定跳远、摸高、单足跳、健身操六项比赛(每个同学限报一项).学生参赛情况如两个统计图所示:

认真观察上面两个统计图后,回答下列问题:
(1)请补充完成条形统计图;
(2)本次参加比赛的总人数是______;扇形统计图中“立定跳远”所在扇形的圆心角度数是______;
(3)若仅用扇形统计图,能否求出本次参加比赛的总人数?为什么?
(4)摸高与健身操两项比赛的获奖人数分别是6人和3人,哪一个获奖的概率高?请通过计算说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年河北省邯郸市中考数学一模试卷(解析版) 题型:选择题

(2010•邯郸一模)定义一种对正整数n的“F”运算:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为(其中k是使为奇数的正整数),并且运算重复进行.例如:取n=26,则:
若n=15,则第15次“F”运算的结果是( )
A.5
B.10
C.15
D.20

查看答案和解析>>

同步练习册答案