【题目】已知:如图1,点A、O、B依次在直线MN上,现将射线OA绕点O沿顺时针方向以每秒2°的速度旋转,同时射线OB绕点O沿逆时针方向以每秒4°的速度旋转,如图2,设旋转时间为t(0秒≤t≤90秒).
(1)用含t的代数式表示∠MOA的度数.
(2)在运动过程中,当∠AOB第二次达到60°时,求t的值.
(3)在旋转过程中是否存在这样的t,使得射线OB是由射线OM、射线OA、射线ON中的其中两条组成的角(指大于0°而不超过180°的角)的平分线?如果存在,请直接写出t的值;如果不存在,请说明理由.
【答案】(1)∠MOA=2t,(2)t=40秒时,∠AOB第二次达到60°;(3)当t的值分别为18、22.5、36、60、67.5秒时,射线OB是由射线OM、射线OA、射线ON中的其中两条组成的角的平分线.
【解析】
试题分析:(1)∠AOM的度数等于OA旋转速度乘以旋转时间;
(2)当∠AOB第二次达到60°时,射线OB在OA的左侧,根据∠AOM+∠BON﹣∠MON=60°列方程求解可得;
(3)射线OB是由射线OM、射线OA、射线ON中的其中两条组成的角的平分线有三种情况:
①OB两次平分∠AOM时,根据∠AOM=∠BOM,列方程求解,
②OB两次平分∠MON时,根据∠BOM=∠MON,列方程求解,
③OB平分∠AON时,根据∠BON=∠AON,列方程求解.
解:(1)∠MOA=2t,
(2)如图,
根据题意知:∠AOM=2t,∠BON=4t,
当∠AOB第二次达到60°时,∠AOM+∠BON﹣∠MON=60°,
即2t+4t﹣180=60,解得:t=40,
故t=40秒时,∠AOB第二次达到60°;
(3)射线OB是由射线OM、射线OA、射线ON中的其中两条组成的角的平分线有以下三种情况:
①OB平分∠AOM时,∵∠AOM=∠BOM,
∴t=180﹣4t,或t=4t﹣180,
解得:t=36或t=60;
②OB平分∠MON时,∵∠BOM=∠MON,即∠BOM=90°,
∴4t=90,或4t﹣180=90,
解得:t=22.5,或t=67.5;
③OB平分∠AON时,∵∠BON=∠AON,
∴4t=(180﹣2t),或180﹣(4t﹣180)=(180﹣2t),
解得:t=18或t=90(不符合题意,舍去);
综上,当t的值分别为18、22.5、36、60、67.5秒时,射线OB是由射线OM、射线OA、射线ON中的其中两条组成的角的平分线.
科目:初中数学 来源: 题型:
【题目】如图,学校准备新建一个长度为L的读书长廊,并准备用若干块带有花纹和没有花纹的两种规格大小相同的正方形地面砖搭配在一起,按图中所示的规律拼成图案铺满长廊,已知每个小正方形地面砖的边长均为0.3m.
(1)按图示规律,第一图案的长度L1= ;第二个图案的长度L2= ;
(2)请用代数式表示带有花纹的地面砖块数n与走廊的长度Ln(m)之间的关系;
(2)当走廊的长度L为30.3m时,请计算出所需带有花纹图案的瓷砖的块数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为( )
A.0.7×10﹣3 B.7×10﹣3 C.7×10﹣4 D.7×10﹣5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】先阅读下面的内容,再解决问题,
例题:若m2+2mn+2n2﹣6n+9=0,求m和n的值.
解:∵m2+2mn+2n2﹣6n+9=0
∴m2+2mn+n2+n2﹣6n+9=0
∴(m+n)2+(n﹣3)2=0
∴m+n=0,n﹣3=0
∴m=﹣3,n=3
问题(1)若x2+2y2﹣2xy+4y+4=0,求xy的值.
(2)已知a,b,c是△ABC的三边长,满足a2+b2=10a+8b﹣41,且c是△ABC中最长的边,求c的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是某地下商业街的入口,数学课外兴趣小组的同学打算运用所学的知识测量侧面支架的最高点E到地面的距离EF.经测量,支架的立柱BC与地面垂直,即∠BCA=90°,且BC=1.5m,点F、A、C在同一条水平线上,斜杆AB与水平线AC的夹角∠BAC=30°,支撑杆DE⊥AB于点D,该支架的边BE与AB的夹角∠EBD=60°,又测得AD=1m.请你求出该支架的边BE及顶端E到地面的距离EF的长度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com