【题目】如图,在Rt△ABC中,∠C=90°,BD平分∠ABC,与AC交于点D,点O是AB上一点,⊙O过B、D两点,且分别交AB、BC于点E、F.
(1)求证:AC是⊙O的切线;
(2)已知AB=10,BC=6,求⊙O的半径r .
【答案】
(1)证明:连接OD.
∵OB=OD,
∴∠OBD=∠ODB(等角对等边);
∵BD平分∠ABC,
∴∠ABD=∠DBC,
∴∠ODB=∠DBC(等量代换),
∴OD∥BC(内错角相等,两直线平行);
又∵∠C=90°(已知),
∴∠ADO=90°(两直线平行,同位角相等),
∴AC⊥OD,即AC是⊙O的切线;
(2)解:由(1)知,OD∥BC,
∴ (平行线截线段成比例),
∴ ,
解得r= ,即⊙O的半径r为 .
【解析】根据等角对等边得到∠OBD=∠ODB,由角平分线的定义和等量代换,得到两直线平行,根据两直线平行,同位角相等得到AC是⊙O的切线;(2)由(1)知,OD∥BC,根据平行线截线段成比例定理,两条直线被一组平行线所截,截得的对应线段的长度成比例;求出⊙O的半径.
【考点精析】认真审题,首先需要了解切线的判定定理(切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线),还要掌握平行线分线段成比例(三条平行线截两条直线,所得的对应线段成比例)的相关知识才是答题的关键.
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=x2+bx+c与坐标轴交于A,B两点,则一元二次方程x2+bx+c=0的根的情况是( )
A.没有实数根
B.有两个相等的实数根
C.有两个不相等的实数根
D.可能有实数根,也可能没有实数根
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD、BC是⊙O的两条互相垂直的直径,点P从点O出发,沿O→C→D→O的路线匀速运动,设∠APB=y(单位:度),那么y与点P运动的时间x(单位:秒)的关系图是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,CD∥AB,OE平分∠AOD,OF⊥OE,OG⊥CD,∠CDO=50°,则下列结论:①∠AOE=65°;②OF平分∠BOD;③∠GOE=∠DOF;④∠AOE=∠GOD.其中正确结论的个数是( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC在直角坐标系中.
(1)写出点A,点B的坐标A( , ),B( , );
(2)S△ABC= ;
(3)若把△ABC向上平移2个单位,再向右平移2个单位得△A1B1C1,在图中画出△A1B1C1的位置,并写出点A1、B1、C1的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题1:现有一张△ABC纸片,点D、E分别是△ABC边上两点,若沿直线DE折叠.
(1)探究1:如果折成图①的形状,使A点落在CE上,则∠1与∠A的数量关系是 ;
(2)探究2:如果折成图②的形状,猜想∠1+∠2和∠A的数量关系是 ;
(3)探究3:如果折成图③的形状,猜想∠1、∠2和∠A的数量关系,并说明理由.
(4)问题2:将问题1推广,如图④,将四边形ABCD纸片沿EF折叠,使点A、B落在四边形EFCD的内部时,∠1+∠2与∠A、∠B之间的数量关系是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com