∵1
2+2
2+3
2+…+n
2=
n(n+1)(2n+1),
∴1
2+2
2+3
2+…+100
2=2
2+4
2+6
2+…+100
2+(1
2+3
2+5
2+…+99
2)
×100×(100+1)(2×100+1)=338350;
又∵2
2+4
2+6
2+…+100
2-(1
2+3
2+5
2+…+99
2)
=(2
2-1
2)+(4
2-3
2)+(6
2-5
2)+…+(100
2-99
2)
=(2+1)(2-1)+(4-3)(4+3)+(6+5)(6-5)+…+(100+99)(100-99)
=(2+1)+(4+3)+(6+5)+…+(100+99)
=5050;
∴2
2+4
2+6
2+…+100
2=
=171700.
故答案为:171700.