试题分析:(1)利用矩形的性质可以得到∠A=∠D,利用PE⊥PC可以得到∠APE=∠DCP,从而证明两三角形相似;
(2)利用上题证得的三角形相似,列出比例式,进而得到两个变量之间的函数关系;
(3)假设存在符合条件的Q点,由于PE⊥PC,且四边形ABCD是矩形,易证得△APE∽△DCP,可得AP•PD=AE•CD,同理可通过△AQE∽△DCQ得到AQ•QD=AE•DC,则AP•PD=AQ•QD,分别用PD、QD表示出AP、AQ,将所得等式进行适当变形即可求得AP、AQ的数量关系.
试题解析:(1)∵四边形ABCD为矩形,∴∠A=∠D=90°,∴∠AEP+∠APE=90°,
∵PE⊥PC,∴∠APE+∠CPD=90°,
∴∠AEP=∠DPC,
∴△PAE∽△CDP;
(2)(解法一)∵AP=x,BE=y,∴DP=3-x,AE=2-y. 4分
∵△PAE∽△CDP,∴
, 5分
即
,∴
. 6分
(解法二)∵AP=x,BE=y,∴DP=3-x,AE=2-y. 4分
∵∠A=∠D=90°,∴tan∠AEP=
, tan∠DPC=
,
∵∠AEP=∠DPC,∴tan∠AEP= tan∠DPC. ∴
=
,
即
,∴
.
(解法三)∵AP=x,BE=y,∴DP=3-x,AE=2-y.
如图1,连结CE, ∵∠A=∠B=∠D="90°,"
∴AE
2+AP
2=PE
2,PD
2+CD
2=CP
2,BE
2+BC
2=CE
2,
又∵∠CPE=90°,∴PE
2+CP
2=CE
2,
∴AE
2+AP
2+PD
2+CD
2=BE
2+BC
2,
即(2-y)
2+x
2+(3-x)
2+2
2=y
2+3
2,整理得:
.
∵
=
,
∴当
时,y有最小值,y的最小值为
,
又∵点E在AB上运动(显然点E与点A不重合),且AB=2,
∴
<2
综上所述,
的取值范围是
≤
<2;
(3)存在,理由如下:
如图2,假设存在这样的点Q,使得QC⊥QE.
由(1)得:△PAE∽△CDP,
∴
,
∴
,
∵QC⊥QE,∠D=90
°,
∴∠AQE+∠DQC=90
°,∠DQC+∠DCQ=90°,
∴∠AQE=∠DCQ.
又∵∠A=∠D=90°,
∴△QAE∽△CDQ,
∴
,
∴
∴
,
即
,
∴
,
∴
,
∴
.
∵AP≠AQ,∴AP+AQ=3.又∵AP≠AQ,∴AP≠
,即P不能是AD的中点,
∴当P是AD的中点时,满足条件的Q点不存在,
故当P不是AD的中点时,总存在这样的点Q满足条件,此时AP+AQ=3.
考点: 相似三与性质角形的判定;矩形的性质.