精英家教网 > 初中数学 > 题目详情

比较2,的大小,正确的是

[  ]
A.

B.

C.

D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、问题:你能比较20092010和20102009的大小吗?
为了解决这个问题,我们先把它抽象成数学问题,写出它的一般形式,即比较nn+1和(n+1)n的大小(n为正整数),我们从n=1,n=2,n=3…这些简单的情况入手,从中发现规律,经过归纳,猜出结论.
(1)通过计算,比较下列各组数字大小
①12
21②23
32③34
43
④45
54⑤54
65⑥67
76

(2)把第(1)题的结果经过归纳,你能得出什么结论?
(3)根据上面的归纳猜想得到的结论,试比较两个数的大小:
20092010
20102009(填“>”、“<”或“=”)

查看答案和解析>>

科目:初中数学 来源: 题型:

17、你能20082007比较与20072008的大小吗?
为了解决这个问题,我们首先写出它的一般形式,即比较nn+1与(n+1)n的大小(n是正整数),然后我们从分析n=1,n=2,n=3…中发现规律,经归纳、猜想得出结论
(1)通过计算,比较下列各组中两数的大小:(在横线上填写“>”“=”“<”)
①12
21,②23
32;③34
43;④45
54;⑤56
65
(2)从第(1)题的结果中,经过归纳,可以猜想出nn+1与(n+1)n的大小关系是
当n=1或n=2时,nn+1<(n+1)n;当n≥3时,nn+1>(n+1)n

(3)根据以上归纳.猜想得到的一般结论,试比较下列两数的大小:20082007与20072008
20072008>20082007

查看答案和解析>>

科目:初中数学 来源: 题型:

18、问题:你能比较20052006和20062005的大小吗?
为了解决这个问题,我们先把它抽象成数学问题,写出它的一般形式,即比较nn+1和(n+1)n的大小(n为正整数),我们从n=1,n=2,n=3…这些简单的情况入手,从中发现规律,经过归纳,猜出结论.
(1)通过计算,比较下列各组数字大小
①12
21  ②23
32 ③34
43
④45
54     ⑤56
65      ⑥67
76

(2)根据上面的归纳猜想得到的结论,试比较下列两个数的大小  20052006
20062005(填”>”,”<”,“=”)
(3)把第(1)题的结果经过归纳,你能得出什么结论?

查看答案和解析>>

科目:初中数学 来源: 题型:

在数学学习过程中,通常是利用已有的知识与经验,通过对研究对象进行观察、实验、推理、抽象概括,发现数学规律,揭示研究对象的本质特征.
比如“同底数幂的乘法法则”的学习过程是利用有理数的乘方概念和乘法结合律,由“特殊”到“一般”进行抽象概括的:22×23=25,23×24=27,22×26=28,…?2m×2n=2m+n,…?am×an=am+n(m、n都是正整数).
探索问题:
(1)比较下列各组数据的大小:
2
3
2+1
3+1
,②
2
3
2+2
3+2
,③
2
3
2+3
3+3
,④
2
3
2+4
3+4
,….
(2)请你根据上面的材料归纳出a、b、c(a>b>0,c>0)之间的一个数学关系式;并用已学的数学知识说明你发现结论的正确性.
(3)试用(2)中你归纳的数学关系式,解释下面生活中的一个现象:“若m克糖水里含有n克糖,再加入k克糖(仍不饱和),则糖水更甜了”.

查看答案和解析>>

科目:初中数学 来源: 题型:

问题:能比较两个数20092010和20102009的大小吗?为了解决这个问题,我们先把它抽象成数学问题,写出它的一般彤式,即比较nn+1与(n+1)n的大小(n是正整数),然后,我们从分析n=1,n=2,n=3,…这些简单情形入手,从中发现规律,经过归纳,猜想出结论.
(1)通过计算,比较下列各组中两个数的大小(在空格内填写“>”“=”或“<”).
①12
21
②23
32
③34
43
④45
54
⑤56
65
(2)从第(1)题的结果经过归纳,可猜想出nn+1与(n+1)n的大小关系是
当n<3时,nn+1<(n+1)n,当n≥3时,nn+1>(n+1)n
当n<3时,nn+1<(n+1)n,当n≥3时,nn+1>(n+1)n

(3)根据上面的归纳猜想得到的一般结论,试比较下面两个数的大小:20092010
20102009

查看答案和解析>>

同步练习册答案