分析 (1)由A、C两点的坐标利用待定系数法可求得抛物线解析式,则可求得B点坐标,再利用待定系数法可求得直线BC的解析式;
(2)用m可分别表示出N、M的坐标,则可表示出MN的长,再利用二次函数的最值可求得MN的最大值;
(3)由题意可得当△CMN是以MN为腰的等腰直角三角形时则有MN=MC,且MC⊥MN,则可求表示出M点坐标,代入抛物线解析式可求得m的值;
(4)由条件可得出MN=OC,结合(2)可得到关于m的方程,可求得m的值.
解答 解:
(1)∵抛物线过A、C两点,
∴代入抛物线解析式可得$\left\{\begin{array}{l}{-1-b+c=0}\\{c=3}\end{array}\right.$,解得$\left\{\begin{array}{l}{b=2}\\{c=3}\end{array}\right.$,
∴抛物线解析式为y=-x2+2x+3,
令y=0可得,-x2+2x+3=0,解x1=-1,x2=3,
∵B点在A点右侧,
∴B点坐标为(3,0),
设直线BC解析式为y=kx+s,
把B、C坐标代入可得$\left\{\begin{array}{l}{3k+s=0}\\{s=3}\end{array}\right.$,解得$\left\{\begin{array}{l}{k=-1}\\{s=3}\end{array}\right.$,
∴直线BC解析式为y=-x+3;
(2)∵PM⊥x轴,点P的横坐标为m,
∴M(m,-m2+2m+3),N(m,-m+3),
∵P在线段OB上运动,
∴M点在N点上方,
∴MN=-m2+2m+3-(-m+3)=-m2+3m=-(m-$\frac{3}{2}$)2+$\frac{9}{4}$,
∴当m=$\frac{3}{2}$时,MN有最大值,MN的最大值为$\frac{9}{4}$;
(3)∵PM⊥x轴,
∴当△CMN是以MN为腰的等腰直角三角形时,则有CM⊥MN,
∴M点纵坐标为3,
∴-m2+2m+3=3,解得m=0或m=2,
当m=0时,则M、C重合,不能构成三角形,不符合题意,舍去,
∴m=2;
(4)∵PM⊥x轴,
∴MN∥OC,
当以C、O、M、N为顶点的四边形是平行四边形时,则有OC=MN,
当点P在线段OB上时,则有MN=-m2+3m,
∴-m2+3m=3,此方程无实数根,
当点P不在线段OB上时,则有MN=-m+3-(-m2+2m+3)=m2-3m,
∴m2-3m=3,解得m=$\frac{3+\sqrt{21}}{2}$或m=$\frac{3-\sqrt{21}}{2}$,
综上可知当以C、O、M、N为顶点的四边形是平行四边形时,m的值为$\frac{3+\sqrt{21}}{2}$或$\frac{3-\sqrt{21}}{2}$.
点评 本题为二次函数的综合应用,涉及待定系数法、二次函数的最值、等腰直角三角形的判定和性质、平行四边形的性质及分类讨论思想等知识点.在(2)中用m表示出MN的长是解题的关键,在(3)中确定出CM⊥MN是解题的关键,在(4)中由平行四边形的性质得到OC=MN是解题的关键.本题考查知识点较多,综合性较强,难度较大.
科目:初中数学 来源: 题型:选择题
A. | 300 | B. | 400 | C. | 600 | D. | 800 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 0 | B. | 1个 | C. | 2个 | D. | 3个 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com