精英家教网 > 初中数学 > 题目详情

【题目】已知如图1菱形ABCD,∠ABC=60°,边长为 3,在菱形内作等边三角形△AEF,边长为2 ,点E,点F,分别在AB,AC上,以A为旋转中心将△AEF顺时针转动,旋转角为α,如图2

(1)在图2中证明BE=CF;
(2)若∠BAE=45°,求CF的长度;
(3)当CF= 时,直接写出旋转角α的度数.

【答案】
(1)

证明:连接AC,如图2所示:

∵四边形ABCD是菱形,

∴AB=BC=3,

∵∠ABC=60°,

∴△ABC是等边三角形,

∴∠BAC=60°,AB=AC,

∵△AEF是等边三角形,

∴AE=AF,∠EAF=60°,

∴∠EAF﹣∠BAF=∠BAC﹣∠BAF,

∴∠BAE=∠CAF,

在△AEB和△AFC中,

∴△AEB≌△AFC(SAS),

∴BE=CF


(2)

解:过E点作EM⊥AB于M,如图3所示:

∵∠BAE=45°,则△AEM是等腰直角三角形,

∴EM=AM= AE= ×2 =2,

∴BM=AB﹣AM=3﹣2=1,

在Rt△BME中,由勾股定理得:BE= = =

由(1)得:CF=BE=


(3)

解:过E点作EM⊥AB于M,如图4所示,

则∠EMB=∠EMA=90°,

由(1)得:BE=CF=

设AM=x,则BM=3﹣x,

由勾股定理得:BM2=BE2﹣BM2,BM2=AE2﹣AM2

∴BE2﹣BM2=AE2﹣AM2,即( 2﹣(3﹣x)2=(2 2﹣x2

解得:x=0,即点M与A重合,

∴∠BAE=90°,即α=90°;

同理可得:当CF= 时,α还等于270°;

综上所述:当CF= 时,旋转角α的度数为90°或270°


【解析】(1)连接AC,证明△AEB≌△AFC,即可得出结论;(2)过E点作EM⊥AB于M,则△AEM是等腰直角三角形,得出EM=AM= AE=2,求出BM=AB﹣AM=1,在Rt△BME中,由勾股定理求出BE,即可得出CF的长;(3)过E点作EM⊥AB于M,则∠EMB=∠EMA=90°,由(1)得:BE=CF= ,设AM=x,则BM=3﹣x,由勾股定理得出方程,积解方程求出x=0,得出点M与
A重合,求出∠BAE=90°,即α=90°;同理可得:当CF= 时,α还等于270°即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列图形是将正三角形按一定规律排列,第 1 个图形中所有正三角形的个数有 1 个,第 2 个图形中所有正三角形的个数有 5 个,第 3 个图形中所有正三角形的个数有 17 个,则第 5 个图形中所有正三角形的个数有(

A. 160 B. 161 C. 162 D. 163

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B.

(1)求一次函数的解析式

(2)判断点C(4,-2)是否在该一次函数的图象上,说明理由

(3)若该一次函数的图象与x轴交于D点,求BOD的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知RtABCRtADE,其中∠ACB=AED=90°.

(1)将这两个三角形按图①方式摆放,使点E落在AB上,DE的延长线交BC于点F.求证:BF+EF=DE;

(2)改变ADE的位置,使DEBC的延长线于点F(如图②),则(1)中的结论还成立吗?若成立,加以证明;若不成立,写出此时BF、EFDE之间的等量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:E ∠AOB 的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接 CD,且交 OE 于点F.

(1)求证:OD=OC;

(2)求证:OE 是 CD 的垂直平分线;

(3)若∠AOB=60°,请你探究 OE,EF 之间有什么数量关系?并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着中国传统节日端午节的临近,东方红商场决定开展欢度端午,回馈顾客的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.

(1)打折前甲、乙两种品牌粽子每盒分别为多少元?

(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

(1)(﹣12a2b2c)(﹣abc22=___________

(2)(3a2b﹣4ab2﹣5ab﹣1)(﹣2ab2)=___________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】20181017日是我国第五个扶贫日”,某校学生会干部对学生倡导的扶贫自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,对学校部分捐款人数进行调查和分组统计后,将数据整理成如图所示的统计图,(图中信息不完整),已知A.B两组捐款人数的比为1:5.

被调查的捐款人数分组统计表:

组别

捐款额x/

人数

A

1≤x<10

a

B

10≤x<20

100

C

20≤x<30

______

D

30≤x<40

______

E

40≤x

______

请结合以上信息解答下列问题:

(1)a的值和参与调查的总人数;

(2)补全被调查的捐款人数分组统计图1”并计算扇形B的圆心角度数;

(3)已知该校有学生2200人,请估计捐款数不少于30元的学生人数有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC 中,AB=AC,∠BAC 和∠ACB 的平分线相交于点D,∠ADC=125°,那么∠CAB 的大小是_________度.

查看答案和解析>>

同步练习册答案