【题目】已知,如图,E、F分别为矩形ABCD的边AD和BC上的点,AE=CF.求证:BE=DF.
【答案】证明见解析
【解析】证法一:∵四边形ABCD为矩形,
∴AB=CD,∠A=∠C=90°.…………………………………………4分
在△ABE和△CDF中,……………………………………………………5分
∵, ∴△ABE≌△CDF(SAS),……………………8分
∴BE=DF(全等三角形对应边相等).…………………………………9分
证法二:∵四边形ABCD为矩形,
∴AD∥BC,AD=BC,…………………………………………………3分
又∵AE=CF,∴AD-AE=BC-CF,……………………………5分
即ED=BF,…………………………………………………………………6分
而ED∥BF,
∴四边形BFDE为平行四边形………………………………………………8分
∴BE=DF(平行四边形对边相等).……………………………………9分
利用全等三角形对应边相等求证
科目:初中数学 来源: 题型:
【题目】如图,已知,一次函数y=kx+3的图象经过点A(1,4).
(1)求这个一次函数的解析式;
(2)试判断点B(-1,5),C(0,3),D(2,1)是否在这个一次函数的图象上.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的袋子中装有三张分别标有1、2、3数字的卡片(卡片除数字外完全相同).
(1)从袋中任意抽取一张卡片,则抽出的是偶数的概率为 ;
(2)从袋中任意抽取二张卡片,求被抽取的两张卡片构成两位数是奇数的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列不等式变形正确的是( )
A.由a>b,得ac>bc
B.由a>b,得﹣2a<﹣2b
C.由a>b,得﹣a>﹣b
D.由a>b,得a﹣2<b﹣2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰△OAB的顶角∠AOB=30°,点B在x轴上,腰OA=4
(1)B点得坐标为: ;
(2)画出△OAB关于y轴对称的图形△OA1B1(不写画法,保留画图痕迹),求出A1与B1的坐标;
(3)求出经过A1点的反比例函数解析式.(注:若涉及无理数,请用根号表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数
(1)若两点P(﹣3,m)和Q(1,m)在该函数图象上.求b、m的值;
(2)设该函数的顶点为点B,求出点B 的坐标并求三角形BPQ的面积。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com