精英家教网 > 初中数学 > 题目详情

【题目】如图,已知为射线上一定点,点关于射线的对称点为点为射线上一动点,连接,满足为钝角,以点为中心,将线段逆时针旋转至线段,满足点在射线的反向延长线上.

(1)依题意补全图形;

(2)当点在运动过程中,旋转角是否发生变化?若不变化,请求出的值,若变化,请说明理由;

(3)从点向射线作垂线,与射线的反向延长线交于点,探究线段的数量关系并证明.

【答案】1)见详解;(2)旋转角不发生变化,,理由见详解;(3,证明见详解.

【解析】

(1)根据题意画出图形即可;

(2) 连接,线段于点,证明,通过三点共圆,圆中同弧所对的圆周角与圆心角关系可证;

(3) 连接,线段于点,通过证明从而证明即可求证.

(1)补全图形如图所示

(2)旋转角不发生变化,

理由:如图,连接,线段于点

∵点、点关于射线对称

又∵

又∵线段绕点逆时针旋转至线段

∴点在以点为圆心,线段为半径的圆上

即旋转角不发生变化,

(3)

证明:如图,连接,线段于点

(2)可得:

又∵

中,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】现有甲、乙两个空调安装队分别为A、B两个公司安装空调,甲安装队为A公司安装66台空调,乙安装队为B公司安装80台空调,乙安装队提前一天开工,最后与甲安装队恰好同时完成安装任务.已知甲队比乙队平均每天多安装2台空调,求甲、乙两个安装队平均每天各安装多少台空调.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市AB两个蔬菜基地得知四川CD两个灾民安置点分别急需蔬菜240t260t的消息后,决定调运蔬菜支援灾区,已知A蔬菜基地有蔬菜200tB蔬菜基地有蔬菜300t,现将这些蔬菜全部调运CD两个灾区安置点.从A地运往CD两处的费用分别为每吨20元和25元,从B地运往CD两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.

1)请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值;

C

D

总计/t

A

200

B

x

300

总计/t

240

260

500

2)设AB两个蔬菜基地的总运费为w元,求出wx之间的函数关系式,并求

总运费最小的调运方案;

3)经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少m元(m0),其余线路的运费不变,试讨论总运费最小的调动方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是某班甲、乙、丙三位同学最近5次数学成绩及其所在班级相应平均分的折线统计图,则下列判断错误的是( ).

A. 甲的数学成绩高于班级平均分,且成绩比较稳定

B. 乙的数学成绩在班级平均分附近波动,且比丙好

C. 丙的数学成绩低于班级平均分,但成绩逐次提高

D. 就甲、乙、丙三个人而言,乙的数学成绩最不稳

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是某班甲、乙、丙三位同学最近5次数学成绩及其所在班级相应平均分的折线统计图,则下列判断错误的是( ).

A. 甲的数学成绩高于班级平均分,且成绩比较稳定

B. 乙的数学成绩在班级平均分附近波动,且比丙好

C. 丙的数学成绩低于班级平均分,但成绩逐次提高

D. 就甲、乙、丙三个人而言,乙的数学成绩最不稳

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.ABC的顶点在格点上,A10)、C07).

1)在方格纸中画出平面直角坐标系,写出B点的坐标:B 

2)直接写出ABC的形状:  ,直接写出ABC的面积 

3)若D(﹣14),连接BDACE,则 

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了帮助遭受自然灾害的地区,某学校号召同学们自愿捐款,已知第一次捐款总额为5800元,第二次捐款总额6000元,第二次捐款人数比第一次多20人,而且两次人均捐款额正好相等.

每桶容积(升)

20

15

每桶价格(元)

5.6

4.5

1)求两次各有多少人捐款?

2)民政部门要求将捐款换成实物,统一运送到灾区.学校决定将捐款用于购买桶装水现有两种型号桶装水,上表是这两种桶装水的容积和单价.学校按民政局的救灾规划需订购总容积为40000升的桶装水,用同学们的捐款至少需订购型水多少桶.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.

1求每行驶1千米纯用电的费用;

2若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少用电行驶多少千米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数图象轴上方的部分沿轴翻折到轴下方,图象的其余部分保持不变,翻折后的图象与原图象轴下方的部分组成一个形状的新图象,若直线与该新图象有两个公共点,则的取值范围为_____.

查看答案和解析>>

同步练习册答案