精英家教网 > 初中数学 > 题目详情

【题目】abc是正数,下列各式,从左到右的变形不能用如图验证的是(  )

A. b+c2b2+2bc+c2

B. ab+c)=ab+ac

C. a+b+c2a2+b2+c2+2ab+2bc+2ac

D. a2+2abaa+2b

【答案】D

【解析】

通过几何图形面积之间的数量关系完全平方公式或其他等式作出几何解释即可.

依据①②③④四部分的面积可得,(b+c2b2+2bc+c2,故A能验证;

依据⑤⑥两部分的面积可得,ab+c)=ab+ac,故B能验证;

依据整个图形的面积可得,(a+b+c2a2+b2+c2+2ab+2bc+2ac,故C能验证;

图中不存在长为a+2b,宽为a的长方形,故D选项不能验证;

故选:D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】用代数式表示:

1ab两数的平方和减去它们乘积的2倍;

2ab两数的和的平方减去它们的差的平方;

3)一个两位数,个位上的数字为a,十位上的数字为b,请表示这个两位数;

4)若a表示三位数,现把2放在它的右边,得到一个四位数,请表示这个四位数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知D是△ABC中的边BC上的一点,∠BAD=∠C,∠ABC的平分线交边AC于E,交AD于F,那么下列结论中错误的是( )

A.△BDF∽△BEC
B.△BFA∽△BEC
C.△BAC∽△BDA
D.△BDF∽△BAE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】①计算:(-1)2+ -︱-5︱
②用适当的方法解方程:x2=2x+35.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作平行四边形ABDE,连接AD,EC.

(1)求证:△ADC≌△ECD;
(2)当点D在什么位置时,四边形ADCE是矩形,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在四边形ABCD中,AB∥CD,∠BCD=90°,AB=AD=10cm,BC=8cm,点P从点A出发,沿折线ABCD方向以3cm/s的速度匀速运动;点Q从点D出发,沿线段DC方向以2cm/s的速度匀速运动. 已知两点同时出发,当一个点到达终点时,另一点也停止运动,设运动时间为t(s).

(1)求CD的长;
(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;
(3)在点P、Q的运动过程中,是否存在某一时刻,使得△BPQ的面积为20cm2?若存在,请求出所有满足条件的t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt 中,∠A=90°,点O在AC上,⊙O切BC于点E,A在⊙O上,若AB=5,AC=12,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一条东西走向河的一侧有一村庄C,河边原有两个取水点AB,其中ABAC,由于某种原因,由CA的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点HAHB在一条直线上),并新修一条路CH,测得CB3千米,CH2.4千米,HB1.8千米.

1)问CH是否为从村庄C到河边的最近路?(即问:CHAB是否垂直?)请通过计算加以说明;

2)求原来的路线AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线ABCD交于点O∠AOC的度数为x∠BOE=90°OF平分∠AOD

1)当x=19°48′,求∠EOC∠FOD的度数.

2)当x=60°,射线OEOF分别以10°/s4°/s的速度同时绕点O顺时针转动,求当射线OE与射线OF重合时至少需要多少时间?

3)当x=60°,射线OE10°/s的速度绕点O顺时针转动,同时射线OF也以4°/s的速度绕点O逆时针转动,当射线OE转动一周时射线OF也停止转动.射线OE在转动一周的过程中当∠EOF=90°时,求射线OE转动的时间.

查看答案和解析>>

同步练习册答案